51,172 research outputs found

    The relationship between cooling flows and metallicity measurements for X-ray luminous clusters

    Get PDF
    We explore the relationship between the metallicity of the intracluster gas in clusters of galaxies, determined by X-ray spectroscopy, and the presence of cooling flows. Using ASCA spectra and ROSAT images, we demonstrate a clear segregation between the metallicities of clusters with and without cooling flows. On average, cooling-flow clusters have an emission-weighted metallicity a factor ~ 1.8 times higher than that of non-cooling flow systems. We suggest this to be due to the presence of metallicity gradients in the cooling flow clusters, coupled with the sharply peaked X-ray surface brightness profiles of these systems. Non-cooling flow clusters have much flatter X-ray surface brightness distributions and are thought to have undergone recent merger events which may have mixed the central high-metallicity gas with the surrounding less metal-rich material. We find no evidence for evolution in the emission-weighted metallicities of clusters within z~0.3.Comment: Submitted to MNRAS letters (December 1997). 6 pages, 2 figures in MNRAS LaTex style. Minor revision

    Chandra observations of the galaxy cluster Abell 1835

    Get PDF
    We present the analysis of 30 ksec of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in in the inner 30 kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ~12 keV in the outer regions of the cluster to ~4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parameterized by a Navarro, Frenk & White (1997) model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of \Omega_m=0.40+-0.09 h_50^-0.5. The projected mass within a radius of ~150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about 3x10^8 yr. Cooling flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (~6x10^8 yr) with an integrated mass deposition rate of 230^+80_-50 M_o yr^-1 within a radius of 30 kpc. We discuss the implications of our results in the light of recent RGS observations of Abell 1835 with XMM-Newton.Comment: 15 pages, 15 figures, accepted by MNRA

    Traffic control system and method

    Get PDF
    Frequency of carrier received by aircraft is measured and compared with reference to indicate magnitude of Doppler shift. One Doppler frequency range is selected and indicated by digital signal. Difference between frequency is offset of apparent carrier frequency transmitted by aircraft

    Space shuttle: Static aerodynamic and control investigation of an expendable second stage with payload alone and with delta wing booster (B-15B-1)

    Get PDF
    Aerodynamic force and moment coefficients for scale model of expendable second stage modified S-2 alone and mounted piggyback on space shuttle booster from Mach 0.6 to 4.9

    Traffic control system and method Patent

    Get PDF
    Traffic control system for supersonic transports using synchronous satellite for data relay between vehicles and ground statio

    Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra

    Full text link
    We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra Observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parameterizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White (1997), we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r_2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble Constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe, Omega_m = 0.30^{+0.04}_{-0.03}, and measure a positive cosmological constant, Omega_Lambda = 0.95^{+0.48}_{-0.72}. Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.Comment: Accepted for publication in MNRAS Letters (6 pages, 3 figures

    Space shuttle: Static stability and control investigation of NR/GD delta wing booster (B-20) and delta wing orbiter (134D), volume 1

    Get PDF
    Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to 24 deg at 0 deg and 6 deg sideslip angles and from -10 deg to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96

    Spectral reflectance from plant canopies and optimum spectral channels in the near infrared

    Get PDF
    Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions
    corecore