937 research outputs found
The Growth of Black Holes and Bulges at the Cores of Cooling Flows
Central cluster galaxies (cDs) in cooling flows are growing rapidly through
gas accretion and star formation. At the same time, AGN outbursts fueled by
accretion onto supermassive black holes are generating X-ray cavity systems and
driving outflows that exceed those in powerful quasars. We show that the
resulting bulge and black hole growth follows a trend that is roughly
consistent with the slope of the local (Magorrian) relation between bulge and
black hole mass for nearby quiescent ellipticals. However, a large scatter
suggests that cD bulges and black holes do not always grow in lock-step. New
measurements made with XMM, Chandra, and FUSE of the condensation rates in
cooling flows are now approaching or are comparable to the star formation
rates, alleviating the need for an invisible sink of cold matter. We show that
the remaining radiation losses can be offset by AGN outbursts in more than half
of the systems in our sample, indicating that the level of cooling and star
formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P.
Schuecker, G. W. Pratt, and A. Finogueno
Radio Triggered Star Formation in Cooling Flows
The giant galaxies located at the centers of cluster cooling flows are
frequently sites of vigorous star formation. In some instances, star formation
appears to have been triggered by the galaxy's radio source. The colors and
spectral indices of the young populations are generally consistent with short
duration bursts or continuous star formation for durations much less than 1
Gyr, which is less than the presumed ages of cooling flows. The star formation
properties are inconsistent with fueling by a continuously accreting cooling
flow, although the prevalence of star formation is consistent with repeated
bursts and periodic refueling. Star formation may be fueled, in some cases, by
cold material stripped from neighboring cluster galaxies
Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in Human Immunodeficiency Virus Type 1 infection
Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8+ T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes
Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement
The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement
Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic
Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd
Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described
Statefinder diagnosis and the interacting ghost model of dark energy
A new model of dark energy namely "ghost dark energy model" has recently been
suggested to interpret the positive acceleration of cosmic expansion. The
energy density of ghost dark energy is proportional to the hubble parameter. In
this paper we perform the statefinder diagnostic tool for this model both in
flat and non-flat universe. We discuss the dependency of the evolutionary
trajectories in and planes on the interaction parameter between
dark matter and dark energy as well as the spatial curvature parameter of the
universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we
plot the evolutionary trajectories in and planes for the best fit
values of the cosmological parameters and compare the interacting ghost model
with other dynamical dark energy models. We show that the evolutionary
trajectory of ghost dark energy in statefinder diagram is similar to
holographic dark energy model. It has been shown that the statefinder location
of CDM is in good agreement with observation and therefore the dark
energy models whose current statefinder values are far from the CDM
point can be ruled out.Comment: 23 pages, 6 figure
Generalized Chaplygin gas model: Cosmological consequences and statefinder diagnosis
The generalized Chaplygin gas (GCG) model in spatially flat universe is
investigated. The cosmological consequences led by GCG model including the
evolution of EoS parameter, deceleration parameter and dimensionless Hubble
parameter are calculated. We show that the GCG model behaves as a general
quintessence model. The GCG model can also represent the pressureless CDM model
at the early time and cosmological constant model at the late time. The
dependency of transition from decelerated expansion to accelerated expansion on
the parameters of model is investigated. The statefinder parameters and
in this model are derived and the evolutionary trajectories in plane are
plotted. Finally, based on current observational data, we plot the evolutionary
trajectories in and planes for best fit values of the parameters of
GCG model. It has been shown that although, there are similarities between GCG
model and other forms of chaplygin gas in statefinder plane, but the distance
of this model from the CDM fixed point in diagram is shorter
compare with standard chaplygin gas model.Comment: 10 pages, 5 figures, accepted in Astrophys Space Sci. (2011
- …
