2,397 research outputs found

    Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation

    Get PDF
    Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas

    An anomalous extinction law in the Cep OB3b young cluster: Evidence for dust processing during gas dispersal

    Get PDF
    © 2014. The American Astronomical Society. All rights reserved. We determine the extinction law through Cep OB3b, a young cluster of 3000 stars undergoing gas dispersal. The extinction is measured toward 76 background K giants identified with MMT/Hectospec spectra. Color excess ratios were determined toward each of the giants using V and R photometry from the literature, g, r, i, and z photometry from the Sloan Digital Sky Survey and J, H, and Ks photometry from the Two Micron All Sky Survey. These color excess ratios were then used to construct the extinction law through the dusty material associated with Cep OB3b. The extinction law through Cep OB3b is intermediate between the RV = 3.1 and RV = 5 laws commonly used for the diffuse atomic interstellar medium and dense molecular clouds, respectively. The dependence of the extinction law on line-of-sight AV is investigated and we find the extinction law becomes shallower for regions with AV > 2.5 mag. We speculate that the intermediate dust law results from dust processing during the dispersal of the molecular cloud by the cluster.Support for this work was provided by the National Science Foundation award AST-1009564. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation and JPL support from SAO/JPL SV4-74011. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University

    Surface Mean-Square Amplitudes of Vibration for Nacl

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org

    Vacuum Ambiguity in de Sitter Space at Strong Coupling

    Full text link
    It is well known that in the weak coupling regime, quantum field theories in de Sitter space do not have a unique vacuum, but a class of vacua parametrized by a complex parameter α\alpha, i.e., the so-called α\alpha-vacua. In this article, using gauge/gravity duality, we calculate the symmetric two-point function of strongly coupled N=4{\cal N}=4 supersymmetric Yang-Mills theory on dS3dS_3. We find that there is a class of de Sitter invariant vacua, parametrized by a set of complex parameters {αν}\{\alpha_{\nu}\}.Comment: 17 pages in JHEP style, references adde

    A genome guided evaluation of the Lab4 probiotic consortium

    Get PDF
    In this study, we present the draft genome sequences of the Lab4 probiotic consortium using whole genome sequencing. Draft genome sequences were retrieved and deposited for each of the organisms; PRJNA559984 for B. bifidum CUL20, PRJNA482335 for Lactobacillus acidophilus CUL60, PRJNA482434 for Lactobacillus acid. Probiogenomic in silico analyses confirmed existing taxonomies and identified the presence putative gene sequences that were functionally related to the performance of each organism during in vitro assessments of bile and acid tolerability, adherence to enterocytes and susceptibility to antibiotics. Predictions of genomic stability identified no significant risk of horizontal gene transfer in any of the Lab4 strains and the absence of both antibiotic resistance and virulence genes. These observations were supported by the outcomes of acute phase and repeat dose tolerability studies in Wistar rats where challenge with high doses of Lab4 did not result in any mortalities, clinical/histopathological abnormalities nor indications of systemic toxicity. Detection of increased numbers of lactobacilli and bifidobacteria in the faeces of supplemented rats implied an ability to survive transit through the gastrointestinal tract and/or impact upon the intestinal microbiota composition. In summary, this study provides in silico, in vitro and in vivo support for probiotic functionality and the safety of the Lab4 consortium

    Planetary Nebulae as standard candles XI. Application to Spiral Galaxies

    Get PDF
    We report the results of an [O III] lambda 5007 survey for planetary nebulae (PN) in three spiral galaxies: M101 (NGC 5457), M51 (NGC 5194/5195) and M96 (NGC 3368). By comparing on-band/off-band [O III] lambda 5007 images with images taken in H-alpha and broadband R, we identify 65, 64 and 74 PN candidates in each galaxy, respectively. From these data, an adopted M31 distance of 770 kpc, and the empirical planetary nebula luminosity function (PNLF), we derive distances to M101, M51, and M96 of 7.7 +/- 0.5, 8.4 +/- 0.6, and 9.6 +/- 0.6 Mpc. These observations demonstrate that the PNLF technique can be successfully applied to late-type galaxies, and provide an important overlap between the Population I and Population II distance scales. We also discuss some special problems associated with using the PNLF in spiral galaxies, including the effects of dust and the possible presence of [O III] bright supernova remnants.Comment: 38 pages, TeX, with tables included but not figures. Uses epsf.tex and kpnobasic.tex. To be published in the Astophysical Journal. Full paper is available at http://www.astro.psu.edu/users/johnf/Text/research.htm

    Surplus Photosynthetic Antennae Complexes Underlie Diagnostics of Iron Limitation in a Cyanobacterium

    Get PDF
    Chlorophyll fluorescence from phytoplankton provides a tool to assess iron limitation in the oceans, but the physiological mechanism underlying the fluorescence response is not understood. We examined fluorescence properties of the model cyanobacterium Synechocystis PCC6803 and a ΔisiA knock-out mutant of the same species grown under three culture conditions which simulate nutrient conditions found in the open ocean: (1) nitrate and iron replete, (2) limiting-iron and high-nitrate, representative of natural high-nitrate, low-chlorophyll regions, and (3) iron and nitrogen co-limiting. We show that low variable fluorescence, a key diagnostic of iron limitation, results from synthesis of antennae complexes far in excess of what can be accommodated by the iron-restricted pool of photosynthetic reaction centers. Under iron and nitrogen co-limiting conditions, there are no excess antennae complexes and variable fluorescence is high. These results help to explain the well-established fluorescence characteristics of phytoplankton in high-nutrient, low-chlorophyll ocean regions, while also accounting for the lack of these properties in low-iron, low-nitrogen regions. Importantly, our results complete the link between unique molecular consequences of iron stress in phytoplankton and global detection of iron stress in natural populations from space

    Toward Understanding Massive Star Formation

    Full text link
    Although fundamental for astrophysics, the processes that produce massive stars are not well understood. Large distances, high extinction, and short timescales of critical evolutionary phases make observations of these processes challenging. Lacking good observational guidance, theoretical models have remained controversial. This review offers a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation: - monolithic collapse in isolated cores - competitive accretion in a protocluster environment - stellar collisions and mergers in very dense systems We also review the observed outflows, multiplicity, and clustering properties of massive stars, the upper initial mass function and the upper mass limit. We conclude that high-mass star formation is not merely a scaled-up version of low-mass star formation with higher accretion rates, but partly a mechanism of its own, primarily owing to the role of stellar mass and radiation pressure in controlling the dynamics.Comment: 139 pages, 18 figures, 5 tables, glossar
    • …
    corecore