54,450 research outputs found

    Vapor-liquid surface tension of strong short-range Yukawa fluid

    Full text link
    The thermodynamic properties of strong short-range attractive Yukawa fluids, k=10, 9, 8, and 7, are determined by combining the slab technique with the standard and the replica exchange Monte Carlo (REMC) methods. A good agreement was found among the coexistence curves of these systems calculated by REMC and those previously reported in the literature. However, REMC allows exploring the coexistence at lower temperatures, where dynamics turns glassy. To obtain the surface tension we employed, for both methods, a procedure that yields the pressure tensor components for discontinuous potentials. The surface tension results obtained by the standard MC and REMC techniques are in good agreement.Comment: 6 pages, 4 figure

    Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures

    Full text link
    We reveal the existence of systematic variations of isobaric fragility in different supercooled Lennard-Jones binary mixtures by performing molecular dynamics simulations. The connection between fragility and local structures in the bulk is analyzed by means of a Voronoi construction. We find that clusters of particles belonging to locally preferred structures form slow, long-lived domains, whose spatial extension increases by decreasing temperature. As a general rule, a more rapid growth, upon supercooling, of such domains is associated to a more pronounced super-Arrhenius behavior, hence to a larger fragility.Comment: 14 pages, 14 figures, minor revisions, one figure adde

    Dynamics of uniaxial hard ellipsoids

    Full text link
    We study the dynamics of monodisperse hard ellipsoids via a new event-driven molecular dynamics algorithm as a function of volume fraction ϕ\phi and aspect ratio X0X_0. We evaluate the translational DtransD_{trans} and the rotational DrotD_{rot} diffusion coefficient and the associated isodiffusivity lines in the ϕX0\phi-X_0 plane. We observe a decoupling of the translational and rotational dynamics which generates an almost perpendicular crossing of the DtransD_{trans} and DrotD_{rot} isodiffusivity lines. While the self intermediate scattering function exhibits stretched relaxation, i.e. glassy dynamics, only for large ϕ\phi and X01X_0 \approx 1, the second order orientational correlator C2(t)C_2(t) shows stretching only for large and small X0X_0 values. We discuss these findings in the context of a possible pre-nematic order driven glass transition.Comment: accepted by Phys. Rev. Let

    Spinodal of supercooled polarizable water

    Full text link
    We develop a series of molecular dynamics computer simulations of liquid water, performed with a polarizable potential model, to calculate the spinodal line and the curve of maximum density inside the metastable supercooled region. After analysing the structural properties,the liquid spinodal line is followed down to T=210 K. A monotonic decrease is found in the explored region. The curve of maximum density bends on approaching the spinodal line. These results, in agreement with similar studies on non polarizable models of water, are consistent with the existence of a second critical point for water.Comment: 8 pages, 5 figures, 2 tables. To be published in Phys. Re

    Understanding fragility in supercooled Lennard-Jones mixtures. II. Potential energy surface

    Full text link
    We numerically investigated the connection between isobaric fragility and the properties of high-order stationary points of the potential energy surface in different supercooled Lennard-Jones mixtures. The increase of effective activation energies upon supercooling appears to be driven by the increase of average potential energy barriers measured by the energy dependence of the fraction of unstable modes. Such an increase is sharper, the more fragile is the mixture. Correlations between fragility and other properties of high-order stationary points, including the vibrational density of states and the localization features of unstable modes, are also discussed.Comment: 13 pages, 13 figures, minor revisions, one figure adde

    2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)

    Get PDF
    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/

    Charge ordering induces a smectic phase in oblate ionic liquid crystals

    Full text link
    We report a computer simulation study of an electroneutral mixture of oppositely charged oblate ellipsoids of revolution with aspect ratio A = 1/3. In contrast to hard or soft repulsive ellipsoids, which are purely nematic, this system exhibits a smectic-A phase in which charges of equal sign are counterintuitively packed in layers perpendicular to the nematic director

    Paraelectric and ferroelectric order in two-state dipolar fluids

    Full text link
    Monte Carlo simulations are used to examine cooperative creation of polar state in fluids of two-state particles with nonzero dipole in the excited state. With lowering temperature such systems undergo a second order transition from nonpolar to polar, paraelectric phase. The transition is accompanied by a dielectric anomaly of polarization susceptibility increasing by three orders of magnitude. The paraelectric phase is then followed by formation of a nematic ferroelectric which further freezes into an fcc ferroelectric crystal by a first order transition. A mean-field model of phase transitions is discussed.Comment: 5 pages, 4 figure

    Holonomic constraints : an analytical result

    Full text link
    Systems subjected to holonomic constraints follow quite complicated dynamics that could not be described easily with Hamiltonian or Lagrangian dynamics. The influence of holonomic constraints in equations of motions is taken into account by using Lagrange multipliers. Finding the value of the Lagrange multipliers allows to compute the forces induced by the constraints and therefore, to integrate the equations of motions of the system. Computing analytically the Lagrange multipliers for a constrained system may be a difficult task that is depending on the complexity of systems. For complex systems, it is most of the time impossible to achieve. In computer simulations, some algorithms using iterative procedures estimate numerically Lagrange multipliers or constraint forces by correcting the unconstrained trajectory. In this work, we provide an analytical computation of the Lagrange multipliers for a set of linear holonomic constraints with an arbitrary number of bonds of constant length. In the appendix of the paper, one would find explicit formulas for Lagrange multipliers for systems having 1, 2, 3, 4 and 5 bonds of constant length, linearly connected.Comment: 13 pages, no figures. To appear in J. Phys. A : Math. The
    corecore