2,059 research outputs found

    A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding

    Get PDF
    In bacterial c-type cytochromes, the haem cofactor is covalently attached via two cysteine residues organized in a haem c-binding motif. Here, a novel octa-haem c protein, MccA, is described that contains only seven conventional haem c-binding motifs (CXXCH), in addition to several single cysteine residues and a conserved CH signature. Mass spectrometric analysis of purified MccA from Wolinella succinogenes suggests that two of the single cysteine residues are actually part of an unprecedented CX15CH sequence involved in haem c binding. Spectroscopic characterization of MccA identified an unusual high-potential haem c with a red-shifted absorption maximum, not unlike that of certain eukaryotic cytochromes c that exceptionally bind haem via only one thioether bridge. A haem lyase gene was found to be specifically required for the maturation of MccA in W. succinogenes. Equivalent haem lyase-encoding genes belonging to either the bacterial cytochrome c biogenesis system I or II are present in the vicinity of every known mccA gene suggesting a dedicated cytochrome c maturation pathway. The results necessitate reconsideration of computer-based prediction of putative haem c-binding motifs in bacterial proteomes

    Mobilization of human resources

    Get PDF

    Introduction

    Get PDF

    Superconductivity near the vibrational mode instability in MgCNi3

    Full text link
    To understand the role of electron-phonon interaction in superconducting MgCNi3_{3} we have performed density functional based linear response calculations of its lattice dynamical properties. A large coupling constant λ% \lambda = 1.51 is predicted and contributing phonons are identified as displacements of Ni atoms towards octahedral interstitials of the perovskite lattice. Instabilities found for some vibrational modes emphasize the role of anharmonic effects in resolving experimental controversies.Comment: 4 pages, 4 eps figures, replaces the older versio

    Thermodynamics of the superconducting state in Calcium at 200 GPa

    Full text link
    The thermodynamic parameters of the superconducting state in Calcium under the pressure at 200 GPa were calculated. The Coulomb pseudopotential values (μ⋆\mu^{\star}) from 0.1 to 0.3 were taken into consideration. It has been shown, that the specific heat's jump at the critical temperature and the thermodynamic critical field near zero Kelvin strongly decrease with μ⋆\mu^{\star}. The dimensionless ratios r1≡ΔC(TC)/CN(TC)r_{1}\equiv \Delta C(T_{C})/C^{N}(T_{C}) and r2≡TCCN(TC)/HC2(0)r_{2}\equiv T_{C}C^{N}(T_{C})/H^{2}_{C}(0) significantly differ from the predictions based on the BCS model. In particular, r1r_{1} decreases from 2.64 to 1.97 with the Coulomb pseudopotential; whereas r2r_{2} increases from 0.140 to 0.157. The numerical results have been supplemented by the analytical approach.Comment: 7 pages, 6 figure
    • …
    corecore