6 research outputs found

    International chemical identifier for reactions (RInChI).

    Get PDF
    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases

    Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data.

    Get PDF
    Prediction of compound toxicity is essential because covering the vast chemical space requiring safety assessment using traditional experimentally-based, resource-intensive techniques is impossible. However, such prediction is nontrivial due to the complex causal relationship between compound structure and in vivo harm. Protein target annotations and in vitro experimental outcomes encode relevant bioactivity information complementary to chemicals' structures. This work tests the hypothesis that utilizing three complementary types of data will afford predictive models that outperform traditional models built using fewer data types. A tripartite, heterogeneous descriptor set for 367 compounds was comprised of (a) chemical descriptors, (b) protein target descriptors generated using an algorithm trained on 190 000 ligand-protein interactions from ChEMBL, and (c) descriptors derived from in vitro cell cytotoxicity dose-response data from a panel of human cell lines. 100 random forests classification models for predicting rat LD50 were built using every combination of descriptors. Successive integration of data types improved predictive performance; models built using the full dataset had an average external correct classification rate of 0.82, compared to 0.73-0.80 for models built using two data types and 0.67-0.78 for models built using one. Pairwise comparisons of models trained on the same data showed that including a third data domain on top of chemistry improved average correct classification rate by 1.4-2.4 points, with p-values <0.01. Additionally, the approach enhanced the models' applicability domains and proved useful for generating novel mechanism hypotheses. The use of tripartite heterogeneous bioactivity datasets is a useful technique for improving toxicity prediction. Both protein target descriptors - which have the practical value of being derived in silico - and cytotoxicity descriptors derived from experiment are suitable contributors to such datasets.We thank Alexander Sedykh, Ivan Rusyn and Alexander Tropsha (University of North Carolina – Chapel Hill) for providing the chemical and qHTS data used in this study. We also thank the European Chemical Industry Council Long-range Research Initiative (CEFIC-LRI) for funding (via the LRI Innovative Science Award 2012 to AB). ICC thanks the Pasteur-Paris International PhD Programme for funding. ICC and TM thank Institut Pasteur for funding. AB and DSM thank Unilever and the European Research Commission (Starting Grant ERC-2013-StG 336159 MIXTURE) for funding.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1039/C5TX00406

    Systematic Analysis of Protein Targets Associated with Adverse Events of Drugs from Clinical Trials and Postmarketing Reports.

    Get PDF
    Adverse drug reactions (ADRs) are undesired effects of medicines that can harm patients and are a significant source of attrition in drug development. ADRs are anticipated by routinely screening drugs against secondary pharmacology protein panels. However, there is still a lack of quantitative information on the links between these off-target proteins and the reporting of ADRs in humans. Here, we present a systematic analysis of associations between measured and predicted in vitro bioactivities of drugs and adverse events (AEs) in humans from two sources of data: the Side Effect Resource, derived from clinical trials, and the Food and Drug Administration Adverse Event Reporting System, derived from postmarketing surveillance. The ratio of a drug's therapeutic unbound plasma concentration over the drug's in vitro potency against a given protein was used to select proteins most likely to be relevant to in vivo effects. In examining individual target bioactivities as predictors of AEs, we found a trade-off between the positive predictive value and the fraction of drugs with AEs that can be detected. However, considering sets of multiple targets for the same AE can help identify a greater fraction of AE-associated drugs. Of the 45 targets with statistically significant associations to AEs, 30 are included on existing safety target panels. The remaining 15 targets include 9 carbonic anhydrases, of which CA5B is significantly associated with cholestatic jaundice. We include the full quantitative data on associations between measured and predicted in vitro bioactivities and AEs in humans in this work, which can be used to make a more informed selection of safety profiling targets

    International chemical identifier for reactions (RInChI)

    No full text
    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases
    corecore