53 research outputs found

    Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations

    Get PDF
    Predictive high-fidelity finite element simulations of human cardiac mechanics commonly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computational demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose to reduce the structural dimension of a monolithically coupled structure-Windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom, while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. Following a brief comparison of subspace interpolation methods, we demonstrate how projection-based model order reduction can be easily integrated into a gradient-based optimization. We demonstrate the performance of our method in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting

    A new damping modelling approach and its application in thin wall machining

    Get PDF
    In this paper, a new approach to modelling the damping parameters and its application in thin wall machining is presented. The approach to predicting the damping parameters proposed in this paper eliminates the need for experiments otherwise used to acquire these parameters. The damping model proposed was compared with available damping models and experimental results. A finite element analysis and Fourier transform approach has been used to obtain frequency response function (FRF) needed for stability lobes prediction. Several predicted stable regions using both experimental and numerical FRF’s for various examples gave a good comparison.Engineering and Physical Sciences Research Counci

    Comparative Evaluation of Excitation Schemes for Multi-Shaker Testing of Bridges

    No full text

    Predicting 3D Motions from Single-Camera Optical Test Data

    No full text

    A field experiment on a steel Gerber-truss bridge for damage detection utilizing vehicle-induced vibrations

    No full text
    A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.</p
    • 

    corecore