24 research outputs found

    Movement behaviour of the carabid beetle Pterostichus melanarius in crops and at a habitat interface explains patterns of population redistribution in the field

    Get PDF
    Animals may respond to habitat quality and habitat edges and these responses may affect their distribution between habitats. We studied the movement behaviour of a ground-dwelling generalist predator, the carabid beetle Pterostichus melanarius (Illiger). We performed a mark-recapture experiment in two adjacent habitats; a large plot with oilseed radish (Raphanus sativus) and a plot with rye (Secale cereale). We used model selection to identify a minimal model representing the mark-recapture data, and determine whether habitat-specific motility and boundary behaviour affected population redistribution. We determined movement characteristics of P. melanarius in laboratory arenas with the same plant species using video recording. Both the field and arena results showed preference behaviour of P. melanarius at the habitat interface. In the field, significantly more beetles moved from rye to oilseed radish than from radish to rye. In the arena, habitat entry was more frequent into oilseed radish than into rye. In the field, movement was best described by a Fokker-Planck diffusion model that contained preference behaviour at the interface and did not account for habitat specific motility. Likewise, motility calculated from movement data using the Patlak model was not different between habitats in the arena studies. Motility [m2 d-1] calculated from behavioural data resulted in estimates that were similar to those determined in the field. Thus individual behaviour explained population redistribution in the field qualitatively as well as quantitatively. The findings provide a basis for evaluating movement within and across habitats in complex agricultural landscapes with multiple habitats and habitat interfaces

    Quantifying and simulating movement of the predator carabid beetle Pterostichus melanarius in arable land

    Get PDF
    Keywords: landscape entomology, movement ecology, quantifying movement, population spread, habitat heterogeneity, motility, edge-behaviour, diffusion model, model selection, inverse modelling, Pterostichus melanarius, Carabidae, entomophagous arthropod Biological control provided by entomophagous arthropods is an ecosystem service with the potential to reduce pesticide use in agriculture. The distribution of entomophagous arthropods and the associated ecosystem service over crop fields is affected by their dispersal capacity and landscape heterogeneity. Current knowledge on entomophagous arthropod distribution and movement patterns, in particular for soil dwelling predators, is insufficient to provide advice on how a production landscape should be re-arranged to maximally benefit from biological pest control. Movement has mainly been measured in single habitats rather than in habitat mosaics and as a consequence little information is available on behaviour at habitat interfaces, i.e. the border between two habitats. This study contributes to insight into movement patterns of the entomophagous arthropod Pterostichus melanarius (Illiger) in an agricultural landscape as a knowledge basis for redesign of landscapes for natural pest control. Movement patterns were studied with video equipment in experimental arenas of 5 m2 and with mark-recapture at much larger scales in the field. Interpretation of the results was supported by diffusion models that accounted for habitat specific motility µ (L2 T−1), a measure for diffusion of a population in space and time, and preference behaviour at habitat interfaces. Movement of carabids has mostly been quantified as movement rate, which cannot be used for scaling-up. Available information on movement rate of carabids was made available for scaling-up by calculating motility from published data and looking for patterns through meta-analysis of data from thirteen studies, including 55 records on twelve species. Beetles had on average a three times higher motility in arable land than in forest/hedgerow habitat. The meta-analysis did not identify consistent differences in motility at the individual species level, and a grouping of species according to gender or size did not demonstrate a significant gender or size effect. A methodology to directly estimate motility from data using inverse modelling was evaluated on data of a mass mark-recapture field experiment in a single field of winter triticale (x Triticosecale Wittmack.). Inverse modelling yielded the same result as motility calculated from squared displacement distances. In the first case, motility was calculated as an average over motility of individuals, in the second case motility was estimated from a population density distribution fitted to the recapture data. The similarity in motility between these two very different approaches strengthens the confidence in motility as a suitable concept for quantifying dispersal rate of carabid beetles, and in inverse modelling as a method to retrieve movement parameters from observed patterns. The effect of habitat heterogeneity on movement behaviour was studied for P. melanarius across adjacent fields of oilseed radish (Raphanus sativus) and rye (Secale cereale) in a mark-recapture experiment. The field study was complemented by observations on movement behaviour in the experimental arena. Motility was neither significantly different between the crop species in the field nor in the arena. Overall movement in the field was significantly affected by behaviour at the interface between the crops. Beetles moved more frequently from rye to oilseed radish than in the opposite direction. The arena data indicated greater frequency of habitat entry into oilseed radish as compared to rye. Analysis of video tracking data from the arena resulted in estimates of motility that, when scaled up were close to those obtained in the field. Thus, the studies at the smaller and larger scales gave qualitatively and quantitatively similar results. The effect of habitat heterogeneity on within-season dispersal behaviour was further explored in an agricultural landscape mosaic comprising perennial strips and different crop species with distinct tillage management. Semi-natural grass margins were functionally different from the crop habitats. Motility was lower in margins than in crop habitats, and at the crop-margin interface more beetles moved towards the crop than to the margin. Margins thus effectively acted as barriers for dispersal. In the crop habitats motility differed between fields but no consistent relations were found with crop type, food availability or tillage. Based on the motility in crop habitats P. melanarius was predicted to disperse over a distance of about 100 – 160 m during a growing season in a landscape without semi-natural elements. Given this range little redistribution of beetles is expected between fields within a growing season, even more when fields are surrounded by grass margins or hedgerows, meaning that the success of biological control by this species is more dependent on field management affecting local population dynamics than on habitat heterogeneity. This thesis has resulted in a methodological approach to quantify dispersal behaviour of ground-dwelling insects from mark-recapture data in heterogeneous environments using inverse modelling. The combination of models and data proved to be powerful for studying movement and contributes to the development of predictive dynamic models for population spread of entomophagous arthropods. These models for population spread may be used as part of multi-objective assessment of alternative landscape configurations to find spatial arrangements of land use that maximize the ecosystem service of biological control as part of a wider set of landscape functions.</p

    Ground beetle dispersal: how to bridge the scales?

    Get PDF
    Beneficial arthropods that provide biological control of aphids or weed seeds use a variety of habitats in agricultural landscapes. Information on the movement behaviour of these arthropods between these habitats is needed to develop conservation strategies that sustain pest suppression in agricultural landscapes. Models for movement behaviour may help to understand and explore biocontrol functions. As measurements of behaviour at the landscape scale are technically difficult to make, measurements are often made at smaller scales. It is then necessary to upscale to larger scales, using movement models. Here we present a case study on such upscaling. The first results indicate that upscaling from small scales to large scales, using a correlated random movement model, may result in errors. An alternative approach, to be tested in further work, is to fit the movement model directly to the large scale dat

    Fokker-Planck model for movement of the carabid beetle Pterostichus melanarius in arable land: Model selection and parameterization

    Get PDF
    Carabid beetles in arable land move between different habitats to exploit resources that vary in time and space. Understanding such movement is key to explaining how the pest control function of carabids in arable crop lands depends on the spatial configuration of crop fields and associated semi-natural habitats, but movement at and beyond field scale is not well understood. Here we use a model selection framework to identify and parameterize a parsimonious movement model, based on mark-release-recapture data in two adjacent arable crop fields, one planted with rye, and the other with oil radish. The simplest model assumes motility of beetles to be the same in the two crops, and it does not consider losses of beetles over time due to death or mark loss. These assumptions are relaxed either separately or together in competing models, resulting in a comparison between four models. All models consider the effect of spatially heterogeneous pitfall trapping on the size of the moving population. Models were fitted to data with Poisson likelihood, and Akaike’s information criterion was then used to rank the models. The model selection showed that including a parameter for loss of beetles due to mortality or mark loss resulted in the best approximation of the observed data. The data did not support the assumption of different motility between the two crops. We conclude that our extended model can be used to simulate beetle recapture in mark-release-recapture experiments, but further refinements to the model are needed. The inverse modeling framework for model identification and parameter estimation that was applied in this study proved effective to select the most promising model and parameter values

    Quantifying and simulating movement of the predator carabid beetle Pterostichus melanarius in arable land

    No full text
    Keywords: landscape entomology, movement ecology, quantifying movement, population spread, habitat heterogeneity, motility, edge-behaviour, diffusion model, model selection, inverse modelling, Pterostichus melanarius, Carabidae, entomophagous arthropod Biological control provided by entomophagous arthropods is an ecosystem service with the potential to reduce pesticide use in agriculture. The distribution of entomophagous arthropods and the associated ecosystem service over crop fields is affected by their dispersal capacity and landscape heterogeneity. Current knowledge on entomophagous arthropod distribution and movement patterns, in particular for soil dwelling predators, is insufficient to provide advice on how a production landscape should be re-arranged to maximally benefit from biological pest control. Movement has mainly been measured in single habitats rather than in habitat mosaics and as a consequence little information is available on behaviour at habitat interfaces, i.e. the border between two habitats. This study contributes to insight into movement patterns of the entomophagous arthropod Pterostichus melanarius (Illiger) in an agricultural landscape as a knowledge basis for redesign of landscapes for natural pest control. Movement patterns were studied with video equipment in experimental arenas of 5 m2 and with mark-recapture at much larger scales in the field. Interpretation of the results was supported by diffusion models that accounted for habitat specific motility µ (L2 T−1), a measure for diffusion of a population in space and time, and preference behaviour at habitat interfaces. Movement of carabids has mostly been quantified as movement rate, which cannot be used for scaling-up. Available information on movement rate of carabids was made available for scaling-up by calculating motility from published data and looking for patterns through meta-analysis of data from thirteen studies, including 55 records on twelve species. Beetles had on average a three times higher motility in arable land than in forest/hedgerow habitat. The meta-analysis did not identify consistent differences in motility at the individual species level, and a grouping of species according to gender or size did not demonstrate a significant gender or size effect. A methodology to directly estimate motility from data using inverse modelling was evaluated on data of a mass mark-recapture field experiment in a single field of winter triticale (x Triticosecale Wittmack.). Inverse modelling yielded the same result as motility calculated from squared displacement distances. In the first case, motility was calculated as an average over motility of individuals, in the second case motility was estimated from a population density distribution fitted to the recapture data. The similarity in motility between these two very different approaches strengthens the confidence in motility as a suitable concept for quantifying dispersal rate of carabid beetles, and in inverse modelling as a method to retrieve movement parameters from observed patterns. The effect of habitat heterogeneity on movement behaviour was studied for P. melanarius across adjacent fields of oilseed radish (Raphanus sativus) and rye (Secale cereale) in a mark-recapture experiment. The field study was complemented by observations on movement behaviour in the experimental arena. Motility was neither significantly different between the crop species in the field nor in the arena. Overall movement in the field was significantly affected by behaviour at the interface between the crops. Beetles moved more frequently from rye to oilseed radish than in the opposite direction. The arena data indicated greater frequency of habitat entry into oilseed radish as compared to rye. Analysis of video tracking data from the arena resulted in estimates of motility that, when scaled up were close to those obtained in the field. Thus, the studies at the smaller and larger scales gave qualitatively and quantitatively similar results. The effect of habitat heterogeneity on within-season dispersal behaviour was further explored in an agricultural landscape mosaic comprising perennial strips and different crop species with distinct tillage management. Semi-natural grass margins were functionally different from the crop habitats. Motility was lower in margins than in crop habitats, and at the crop-margin interface more beetles moved towards the crop than to the margin. Margins thus effectively acted as barriers for dispersal. In the crop habitats motility differed between fields but no consistent relations were found with crop type, food availability or tillage. Based on the motility in crop habitats P. melanarius was predicted to disperse over a distance of about 100 – 160 m during a growing season in a landscape without semi-natural elements. Given this range little redistribution of beetles is expected between fields within a growing season, even more when fields are surrounded by grass margins or hedgerows, meaning that the success of biological control by this species is more dependent on field management affecting local population dynamics than on habitat heterogeneity. This thesis has resulted in a methodological approach to quantify dispersal behaviour of ground-dwelling insects from mark-recapture data in heterogeneous environments using inverse modelling. The combination of models and data proved to be powerful for studying movement and contributes to the development of predictive dynamic models for population spread of entomophagous arthropods. These models for population spread may be used as part of multi-objective assessment of alternative landscape configurations to find spatial arrangements of land use that maximize the ecosystem service of biological control as part of a wider set of landscape functions

    Effect of light quality on movement of Pterostichus melanarius (Coleoptera: Carabidae)

    No full text
    The aim of this project was to study the effect of red light on night time behaviour of Pterostichus melanarius (Coleoptera: Carabidae). An experiment was conducted in experimental arenas in the autumn of 2008. Beetles were recorded 20 min per hour during a period of 8 hours under red light, near infrared radiation and white light

    Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance to tolerance of grasses to nematodes

    No full text
    Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size classes or by using whole communities from different origins. Our approach was to investigate both the individual and the interaction effects of highly abundant soil organisms (microorganisms, nematodes and earthworms) to evaluate their impacts on grassland plant communities. Earthworms increased total plant community biomass by stimulating root growth. Nematodes reduced the biomass of grasses, but this effect was alleviated by the presence of earthworms. Non-leguminous forb biomass increased in the presence of nematodes, probably due to an alleviation of the competitive strength of grasses by nematodes. Microorganisms reduced the diversity and evenness of the plant community, but only in the absence of earthworms. Legume biomass was not affected by soil organisms, but Lotus corniculatus flowered earlier in the presence of microorganisms and the number of flowers decreased in the presence of nematodes. The results indicate that earthworms have a profound impact on the structure of grassland plant communities by counterbalancing the negative effects of plant-feeding nematodes on grasses and by conserving the evenness of the plant community. We propose that interacting effects of functionally dissimilar soil organisms on plant community performance have to be taken into account in future studies, since individual effects of soil organism groups may cancel out each other in functionally diverse soil communities
    corecore