2 research outputs found

    Implementation of a symmetric surface electrode ion trap with field compensation using a modulated Raman effect

    Full text link
    We describe the fabrication and characterization of a new surface-electrode Paul ion trap designed for experiments in scalable quantum information processing with Ca+. A notable feature is a symmetric electrode pattern which allows rotation of the normal modes of ion motion, yielding efficient Doppler cooling with a single beam parallel to the planar surface. We propose and implement a technique for micromotion compensation in all directions using an infrared repumper laser beam directed into the trap plane. Finally, we employ an alternate repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.Comment: 9 pages, 14 figures; Rewritten section IB and added author

    Fabrication and heating rate study of microscopic surface electrode ion traps

    Get PDF
    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with trapping height of approximately 240 micron. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed on metal surfaces and amorphous dielectrics.Comment: 17 pages, 5 figure
    corecore