5 research outputs found

    Extragalactic cosmic-ray source composition and the interpretation of the ankle

    Full text link
    We consider the stochastic propagation of high-energy protons and nuclei in the cosmological microwave and infrared backgrounds, using revised photonuclear cross-sections and following primary and secondary nuclei in the full 2D nuclear chart. We confirm earlier results showing that the high-energy data can be fit with a pure proton extragalactic cosmic ray (EGCR) component if the source spectrum is ∝E−2.6\propto E^{-2.6}. In this case the ankle in the cosmic ray (CR) spectrum may be interpreted as a pair-production dip associated with the propagation. We show that when heavier nuclei are included in the source with a composition similar to that of Galactic cosmic-rays (GCRs), the pair-production dip is not present unless the proton fraction is higher than 85%. In the mixed composition case, the ankle recovers the past interpretation as the transition from GCRs to EGCRs and the highest energy data can be explained by a harder source spectrum ∝E−2.2\propto E^{-2.2}-- E−2.3E^{-2.3}, reminiscent of relativistic shock acceleration predictions, and in good agreement with the GCR data at low-energy and holistic scenarios. While the expected cosmogenic neutrino fluxes at high energy are very similar for pure proton and mixed composition hypothesis, the two scenarii predict very different elongation rates from 1017.510^{17.5} to 102010^{20} eV.Comment: 4 Pages, 4 Figures, to appear in the 29th ICRC (Pune, India) proceeding

    UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum

    Full text link
    We consider the stochastic propagation of high-energy protons and nuclei in the cosmological microwave and infrared backgrounds, using revised photonuclear cross-sections and following primary and secondary nuclei in the full 2D nuclear chart. We confirm earlier results showing that the high-energy data can be fit with a pure proton extragalactic cosmic ray (EGCR) component if the source spectrum is \propto E^{-2.6}. In this case the ankle in the CR spectrum may be interpreted as a pair-production dip associated with the propagation. We show that when heavier nuclei are included in the source with a composition similar to that of Galactic cosmic-rays (GCRs), the pair-production dip is not present unless the proton fraction is higher than 85%. In the mixed composition case, the ankle recovers the past interpretation as the transition from GCRs to EGCRs and the highest energy data can be explained by a harder source spectrum \propto E^{-2.2} - E^{-2.3}, reminiscent of relativistic shock acceleration predictions, and in good agreement with the GCR data at low-energy and holistic scenarios.Comment: 4 pages, 4 figures, submitted to A&A Letters (minor changes, two figures replaced, two references added

    Small Scale Anisotropy Predictions for the Auger Observatory

    Full text link
    We study the small scale anisotropy signal expected at the Pierre Auger Observatory in the next 1, 5, 10, and 15 years of operation, from sources of ultra-high energy (UHE) protons. We numerically propagate UHE protons over cosmological distances using an injection spectrum and normalization that fits current data up to \sim 10^{20}\eV. We characterize possible sources of ultra-high energy cosmic rays (UHECRs) by their mean density in the local Universe, ρˉ=10−r\bar{\rho} = 10^{-r} Mpc−3^{-3}, with rr between 3 and 6. These densities span a wide range of extragalactic sites for UHECR sources, from common to rare galaxies or even clusters of galaxies. We simulate 100 realizations for each model and calculate the two point correlation function for events with energies above 4 \times 10^{19}\eV and above 10^{20}\eV, as specialized to the case of the Auger telescope. We find that for r\ga 4, Auger should be able to detect small scale anisotropies in the near future. Distinguishing between different source densities based on cosmic ray data alone will be more challenging than detecting a departure from isotropy and is likely to require larger statistics of events. Combining the angular distribution studies with the spectral shape around the GZK feature will also help distinguish between different source scenarios.Comment: 15 pages, 6 figures, 6 tables, submitted to JCA
    corecore