43 research outputs found

    Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport

    Get PDF
    While the absorption of light is ubiquitous in nature and in applications, the question remains how absorption modifies the transmission channels in random media. We present a numerical study on the effects of optical absorption on the maximal transmission and minimal reflection channels in a two-dimensional disordered waveguide. In the weak absorption regime, where the system length is less than the diffusive absorption length, the maximal transmission channel is dominated by diffusive transport and it is equivalent to the minimal reflection channel. Its frequency bandwidth is determined by the underlying quasimode width. However, when the absorption is strong, light transport in the maximal transmission channel undergoes a sharp transition and becomes ballistic-like transport. Its frequency bandwidth increases with absorption, and the exact scaling varies with the sample's realization. The minimal reflection channel becomes different from the maximal transmission channel and becomes dominated by absorption. Counterintuitively, we observe in some samples that the minimum reflection eigenvalue increases with absorption. Our results show that strong absorption turns open channels in random media from diffusive to ballistic-like.Comment: 11 pages, 7 figure

    Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry

    Get PDF
    Trihalomethanes are predominantly formed during disinfection of water via reactions of the oxidant with natural organic matter. Even though chlorinated and brominated trihalomethanes are the most widespread organic contaminants in drinking water, when iodide is present in raw water iodinated trihalomethanes can also be formed. The formation of iodinated trihalomethanes can lead to taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated or chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. The analysis of 10 trihalomethanes in water samples in a single run is challenging because the iodinated trihalomethanes are found at very low concentrations (ng/L range), while the regulated chlorinated and brominated trihalomethanes are present at much higher concentrations (above ÎĽg/L). An automated headspace solid-phase microextraction technique, with a programmed temperature vaporizer inlet coupled with gas chromatography-mass spectrometry, was developed for routine analysis of 10 trihalomethanes i.e. bromo-, chloro- and iodo-trihalomethanes in water samples. The carboxen/polydimethylsiloxane/divinylbenzene fiber was found to be the most suitable. The optimization, linearity range, accuracy and precision of the method are discussed. The limits of detection range from 1 ng/L to 20 ng/L for iodoform and chloroform, respectively. Matrix effects in treated groundwater, surfacewater, seawater, and secondary wastewater were investigated and it was shown that the method is suitable for the analysis of trace levels of iodinated trihalomethanes in a wide range of waters.The method developed in the present study has the advantage of being rapid, simple and sensitive. A survey conducted throughout various process stages in an advanced water recycling plant showed the presence of iodinated trihalomethanes at ng/L levels

    Formation of methyl iodide on a natural manganese oxide

    Get PDF
    This paper demonstrates that manganese oxides can initiate the formation of methyl iodide, a volatile compound that participates to the input of iodine into the atmosphere. The formation of methyl iodide was investigated using a natural manganese oxide in batch experiments for different conditions and concentrations of iodide, natural organic matter(NOM) and manganese oxide. Methyl iodide was formed at concentrations ≤1 μg L-1 for initial iodide concentrations ranging from 0.8 to 38.0 mg L-1. The production of methyl iodide increased with increasing initial concentrations of iodide ion and Mn sand and when pH decreased from 7 to 5. The hydrophilic NOM isolate exhibited the lowest yield of methyl iodide whereas hydrophobic NOM isolates such as Suwannee River HPOA fraction produced the highest concentration of methyl iodide. The formation of methyl iodide could take place through the oxidation of NOM on manganese dioxide in the presence of iodide. However, the implication of elemental iodine cannot be excluded at acidic pH. Manganese oxides can then participate with ferric oxides to the formation of methyl iodide in soils and sediments. The formation of methyl iodide is unlikely in technical systems such as drinking water treatment i.e. for ppt levels of iodide and low contact times with manganese oxides

    Oxidation of iodide and iodine on birnessite (δ-MnO2) in the pH range 4-8

    Get PDF
    The oxidation of iodide by synthetic birnessite (δ-MnO2) was studied in perchlorate mediain the pH range 4-8. Iodine (I2) was detected as an oxidation product that was subsequently further oxidized to iodate (IO3). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1 M2 s1. Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 mM/g for iodate at pH5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH 7.5, iodide is not oxidized to a significant extent

    IODO-Disinfection By-Products: An Emerging Concern

    Get PDF

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota

    Effect of preconditioning on silver leaching and bromide removal properties of silver-impregnated activated carbon (SIAC)

    No full text
    Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production
    corecore