748 research outputs found

    On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling

    Full text link
    An in situ study of deformation, fracture, and fatigue behavior of silicon as a lithium-ion battery electrode material is presented. Thin films (100-200 nm) of silicon are cycled in a half-cell configuration with lithium metal foil as counter/reference electrode, with 1M lithium hexafluorophosphate in ethylene carbonate, diethylene carbonate, dimethyl carbonate solution (1:1:1, wt.%) as electrolyte. Stress evolution in the Si thin-film electrodes during electrochemical lithiation and delithiation is measured by monitoring the substrate curvature using the multi-beam optical sensing method. The stress measurements have been corrected for contributions from residual stress arising from sputter-deposition. An indirect method for estimating the potential errors due to formation of the solid-electrolyte-interphase layer and surface charge on the stress measurements was presented. The films undergo extensive inelastic deformation during lithiation and delithiation. The peak compressive stress during lithiation was 1.48 GPa. The stress data along with the electron microscopy observations are used to estimate an upper bound fracture resistance of lithiated Si, which is approximately 9-11 J/m^2. Fracture initiation and crack density evolution as a function of cycle number is also reported.Comment: 25 pages, 9 figure

    Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer

    No full text
    International audienceThe study of the growth of nucleation-mode particles is important, as this prevents their loss through diffusion and allows them to reach sizes where they may become effective cloud condensation nuclei. Hyytiälä, a forested site in southern Finland, frequently experiences particle nucleation events during the spring and autumn, where particles first appear during the morning and continue to grow for several hours afterwards. As part of the QUEST 2 intensive field campaign during March and April 2003, an Aerodyne Aerosol Mass Spectrometer (AMS) was deployed alongside other aerosol instrumentation to study the particulate composition and dynamics of growth events and characterise the background aerosol. Despite the small mass concentrations, the AMS was able to distinguish the grown particles in the <100 nm regime several hours after an event and confirm that the particles were principally organic in composition. The AMS was also able to derive a mass spectral fingerprint for the organic species present, and found that it was consistent between events and independent of the mean particle diameter during non-polluted cases, implying the same species were also condensing onto the accumulation mode. The results were compared with those from offline analyses such as GC-MS and were consistent with the hypothesis that the main components were alkanes from plant waxes and the oxidation products of terpenes
    corecore