12,571 research outputs found

    Landau damping of Bogoliubov excitations in optical lattices at finite temperature

    Full text link
    We study the damping of Bogoliubov excitations in an optical lattice at finite temperatures. For simplicity, we consider a Bose-Hubbard tight-binding model and limit our analysis to the lowest excitation band. We use the Popov approximation to calculate the temperature dependence of the number of condensate atoms nc0(T)n^{\rm c 0}(T) in each lattice well. We calculate the Landau damping of a Bogoliubov excitation in an optical lattice due to coupling to a thermal cloud of excitations. While most of the paper concentrates on 1D optical lattices, we also briefly present results for 2D and 3D lattices. For energy conservation to be satisfied, we find that the excitations in the collision process must exhibit anomalous dispersion ({\it i.e.} the excitation energy must bend upward at low momentum), as also exhibited by phonons in superfluid 4He^4\rm{He}. This leads to the sudden disappearance of all damping processes in DD-dimensional simple cubic optical lattice when Unc06DJU n^{\rm c 0}\ge 6DJ, where UU is the on-site interaction, and JJ is the hopping matrix element. Beliaev damping in a 1D optical lattice is briefly discussed.Comment: 28 pages, 9 figure

    Path-integral calculation of the third virial coefficient of quantum gases at low temperatures

    Full text link
    We derive path-integral expressions for the second and third virial coefficients of monatomic quantum gases. Unlike previous work that considered only Boltzmann statistics, we include exchange effects (Bose-Einstein or Fermi-Dirac statistics). We use state-of-the-art pair and three-body potentials to calculate the third virial coefficient of 3He and 4He in the temperature range 2.6-24.5561 K. We obtain uncertainties smaller than those of the limited experimental data. Inclusion of exchange effects is necessary to obtain accurate results below about 7 K.Comment: The following article has been accepted by The Journal of Chemical Physics. After it is published, it will be found at http://jcp.aip.org/ Version 2 includes the corrections detailed in the Erratu

    Structure and Evolution of Giant Cells in Global Models of Solar Convection

    Full text link
    The global scales of solar convection are studied through three-dimensional simulations of compressible convection carried out in spherical shells of rotating fluid which extend from the base of the convection zone to within 15 Mm of the photosphere. Such modelling at the highest spatial resolution to date allows study of distinctly turbulent convection, revealing that coherent downflow structures associated with giant cells continue to play a significant role in maintaining the strong differential rotation that is achieved. These giant cells at lower latitudes exhibit prograde propagation relative to the mean zonal flow, or differential rotation, that they establish, and retrograde propagation of more isotropic structures with vortical character at mid and high latitudes. The interstices of the downflow networks often possess strong and compact cyclonic flows. The evolving giant-cell downflow systems can be partly masked by the intense smaller scales of convection driven closer to the surface, yet they are likely to be detectable with the helioseismic probing that is now becoming available. Indeed, the meandering streams and varying cellular subsurface flows revealed by helioseismology must be sampling contributions from the giant cells, yet it is difficult to separate out these signals from those attributed to the faster horizontal flows of supergranulation. To aid in such detection, we use our simulations to describe how the properties of giant cells may be expected to vary with depth, how their patterns evolve in time, and analyze the statistical features of correlations within these complex flow fields.Comment: 22 pages, 16 figures (color figures are low res), uses emulateapj.cls Latex class file, Results shown during a Press release at the AAS meeting in June 2007. Submitted to Ap

    Simulations of turbulent convection in rotating young solar-like stars: Differential rotation and meridional circulation

    Full text link
    We present the results of three-dimensional simulations of the deep convective envelope of a young (10 Myr) one-solar-mass star, obtained with the Anelastic Spherical Harmonic code. Since young stars are known to be faster rotators than their main sequence counterparts, we have systematically studied the impact of the stellar rotation speed, by considering stars spinning up to five times as fast as the Sun. The aim of these nonlinear models is to understand the complex interactions between convection and rotation. We discuss the influence of the turbulence level and of the rotation rate on the intensity and the topology of the mean flows. For all of the computed models, we find a solar-type superficial differential rotation, with an equatorial acceleration, and meridional circulation that exhibits a multicellular structure. Even if the differential rotation contrast decreases only marginally for high rotation rates, the meridional circulation intensity clearly weakens according to our simulations. We have also shown that, for Taylor numbers above a certain threshold (Ta>10^9), the convection can develop a vacillating behavior. Since simulations with high turbulence levels and rotation rates exhibit strongly cylindrical internal rotation profiles, we have considered the influence of baroclinic effects at the base of the convective envelope of these young Suns, to see whether such effect can modify the otherwise near cylindrical profiles to produce more conical, solar-like profiles.Comment: 32 pages, 18 figures, 2 tables, to appear in Ap

    Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: influence of dark states

    Get PDF
    We studied the rate of spontaneous emission from colloidal CdSe and CdTe nanocrystals at room temperature. The decay rate, obtained from luminescence decay curves, increases with the emission frequency in a supra-linear way. This dependence is explained by the thermal occupation of dark exciton states at room temperature, giving rise to a strong attenuation of the rate of emission. The supra-linear dependence is in agreement with the results of tight-binding calculations.Comment: 11 page

    Non-Gaussian statistics of electrostatic fluctuations of hydration shells

    Full text link
    We report the statistics of electric field fluctuations produced by SPC/E water inside a Kihara solute given as a hard-sphere core with a Lennard-Jones layer at its surface. The statistics of electric field fluctuations, obtained from numerical simulations, are studied as a function of the magnitude of a point dipole placed close to the solute-water interface. The free energy surface as a function of the electric field projected on the dipole direction shows a cross-over with the increasing dipole magnitude. While it is a single-well harmonic function at low dipole values, it becomes a double-well surface at intermediate dipole moment magnitudes, transforming to a single-well surface, with a non-zero minimum position, at still higher dipoles. A broad intermediate region where the interfacial waters fluctuate between the two minima is characterized by intense field fluctuations, with non-Gaussian statistics and the variance far exceeding the linear-response expectations. The excited state of the surface water is found to be lifted above the ground state by the energy required to break approximately two hydrogen bonds. This state is pulled down in energy by the external electric field of the solute dipole, making it readily accessible to thermal excitations. The excited state is a localized surface defect in the hydrogen-bond network creating a stress in the nearby network, but otherwise relatively localized in the region closest to the solute dipole

    On optimising cost and value in eScience:Case studies in radio astronom

    Get PDF
    Large-scale science instruments, such as the LHC and recent distributed radio telescopes such as LOFAR, show that we are in an era of data-intensive scientific discovery. All of these instruments rely critically on significant eScience resources, both hardware and software, to do science. Considering limited science budgets, and the small fraction of these that can be dedicated to compute hardware and software, there is a strong and obvious desire for low-cost computing. However, optimizing for cost is only half of the equation, the value potential over the lifetime of the instrument should also be taken into account. Using a tangible example, compute hardware, we introduce a conceptual model to approximate the lifetime relative science merit of such a system. With a number of case studies, focused on eScience applications in radio astronomy past, present and future, we show that the hardware-based analysis can be applied more broadly. While the introduced model is not intended to result in a numeric value for merit, it does enumerate some components that define this metric

    The Effect of Iron Dextran Injection on Daily Weight Gain and Haemoglobin Values in Whole Milk Fed Calves

    Get PDF
    Anaemia caused by iron deficiency has long been reported in dairy calves. This study investigated iron deficiency anaemia on UK dairy farms feeding whole milk and evaluated the effect of iron supplementation on the daily weight gain (DG) and haemoglobin (Hb) levels of these calves. Two-hundred-and-thirty-seven calves were enrolled across six farms. At enrolment, calves were randomly allocated to either receive treatment with iron injection (INJ; n = 120) consisting of 5 mL (1 g iron) of iron dextran (Uniferon 20% Injection, Pharmacosmos) or no injection, control (CON; n = 117). Calves were blood-sampled for Hb and total proteins and weighed at weeks one, six and 12 of age. Iron had a significant effect on DG from one to six weeks, with an average 78 g/d (SD 18 g/d, n = 188, 95% Confidence interval: 44–112 g/d, p < 0.001) DG increase in the INJ calves. Iron had a significant effect on Hb concentration at six weeks between the INJ group and CON group (110.7 (SD 12.4) versus 94.9 g/L (SD 13.2), respectively). Calves with a higher growth rate from one to six weeks were more likely to have low Hb levels at six weeks. There was farm variation in both Hb levels and DG, however, despite this, there was an effect of iron across all farms
    corecore