218 research outputs found

    Role of electrostatic forces in cluster formation in a dry ionomer

    Full text link
    This simulation study investigates the dependence of the structure of dry Nafion®^{\tiny\textregistered}-like ionomers on the electrostatic interactions between the components of the molecules. In order to speed equilibration, a procedure was adopted which involved detaching the side chains from the backbone and cutting the backbone into segments, and then reassembling the macromolecule by means of a strong imposed attractive force between the cut ends of the backbone, and between the non-ionic ends of the side chains and the midpoints of the backbone segments. Parameters varied in this study include the dielectric constant, the free volume, side-chain length, and strength of head-group interactions. A series of coarse-grained mesoscale simulations shows the morphlogy to depend sensitively on the ratio of the strength of the dipole-dipole interactions between the side-chain acidic end groups to the strength of the other electrostatic components of the Hamiltonian. Examples of the two differing morphologies proposed by Gierke and by Gebel emerge from our simulations.Comment: 39 pages, 18 figures, accepted for publicatio

    Predicted field-induced hexatic structure in an ionomer membrane

    Full text link
    Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion®^{\tiny \textregistered}-like ionomer by the imposition of a strong electric field. We observe the formation of novel structures aligned along the direction of the applied field. The polar head groups of the ionomer side chains aggregate into clusters, which then form rod-like formations which assemble into a hexatic array aligned with the direction of the field. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexatic array of rod-like structures persists, and has a lower calculated free energy than the original isotropic morphology.Comment: 4 pages, 7 figure

    Overcharging: The Crucial Role of Excluded Volume

    Full text link
    In this Letter we investigate the mechanism for overcharging of a single spherical colloid in the presence of aqueous salts within the framework of the primitive model by molecular dynamics (MD) simulations as well as integral-equation theory. We find that the occurrence and strength of overcharging strongly depends on the salt-ion size, and the available volume in the fluid. To understand the role of the excluded volume of the microions, we first consider an uncharged system. For a fixed bulk concentration we find that upon increasing the fluid particle size one strongly increases the local concentration nearby the colloidal surface and that the particles become laterally ordered. For a charged system the first surface layer is built up predominantly by strongly correlated counterions. We argue that this a key mechanism to produce overcharging with a low electrostatic coupling, and as a more practical consequence, to account for charge inversion with monovalent aqueous salt ions.Comment: 7 pages, 3 figs (4 EPS files). To appear in Europhysics Letter
    • …
    corecore