14 research outputs found

    Trace Elements in Chromian Spinels from Four Siberian Kimberlites

    Get PDF
    We analysed the major, minor and trace elements chemistry of forty-two Cr-spinels from four Siberian kimberlites. They showed a wide range in Mg# (Mg/(Mg + Fe2+); 0.42–0.78) and Cr# (Cr/(Cr + Al); 0.32–0.92) and a common trend of increasing Cr# with decreasing Mg#. The major element classification schemes suggested that there were spinels deriving from a peridotitic source (Xen) and spinels crystallised from kimberlitic melts (Chr). Laser-Ablation Inductively Coupled Plasma Mass Spectrometry on both groups showed that the trace elements with the highest abundance were Mn (985–3390 ppm), Ni (531–3162 ppm), V (694–2510 ppm) and Zn (475–2230 ppm). Testing the effectiveness of trace elements in determining the source for Cr-spinels, we found out that Cr-spinels crystallised directly from a kimberlitic melt usually showed higher Mn, Ni, Sc and V concentrations with respect to those of peridotitic origin. In addition, using the available partitioning models, we found that the correlations between major elements and Ni, Co, Sc and Ga in the Xen group could be explained by subsolidus equilibration between spinel, olivine and clinopyroxene at 800–1000 °C, thus supporting a peridotitic source for this group. Finally, we calculated the composition of the possible melts in equilibrium with the Cr-spinels of the Chr group, using a selected set of partition coefficients. Calculated abundances of Cu, Ga and Zr were comparable to those of the kimberlite, while V was never close to the kimberlite composition. This simulation highlighted the need for new data on the trace elements partition coefficients between kimberlitic melts and Cr-spinel

    Diamond-inclusion system recording old deep lithosphere conditions at Udachnaya (Siberia)

    Get PDF
    Diamonds and their inclusions are unique fragments of deep Earth, which provide rare samples from inaccessible portions of our planet. Inclusion-free diamonds cannot provide information on depth of formation, which could be crucial to understand how the carbon cycle operated in the past. Inclusions in diamonds, which remain uncorrupted over geological times, may instead provide direct records of deep Earth’s evolution. Here, we applied elastic geothermobarometry to a diamond-magnesiochromite (mchr) host-inclusion pair from the Udachnaya kimberlite (Siberia, Russia), one of the most important sources of natural diamonds. By combining X-ray diffraction and Fourier-transform infrared spectroscopy data with a new elastic model, we obtained entrapment conditions, Ptrap = 6.5(2) GPa and Ttrap = 1125(32)–1140(33) °C, for the mchr inclusion. These conditions fall on a ca. 35 mW/m2 geotherm and are colder than the great majority of mantle xenoliths from similar depth in the same kimberlite. Our results indicate that cold cratonic conditions persisted for billions of years to at least 200 km in the local lithosphere. The composition of the mchr also indicates that at this depth the lithosphere was, at least locally, ultra-depleted at the time of diamond formation, as opposed to the melt-metasomatized, enriched composition of most xenoliths

    Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton

    No full text
    The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the microinclusions indicates two contrasting growth media: Mg-rich carbonatitic and Al-rich silicic. Each media has their own specific set of daughter phases. Carbonatitic microinclusions are characterized by the presence of dolomite, phlogopite, apatite, Mg, Fe-oxide, KCl, rutile, magnetite, Fe-sulfides, and hydrous fluid phases. Silicic microinclusions are composed mainly of free SiO2 phase (quartz), high-Si mica (phengite), Al-silicate (paragonite), F-apatite, Ca-carbonates enriched with Sr and Ba, Fe-sulfides, and hydrous fluid phases. These associations resulted from the cooling of diamond-forming carbonatitic and silicic fluids/melts preserved in microinclusions in cuboid diamonds during their ascent to the surface. The observed compositional variations indicate different origins and evolutions of these fluids/melts

    The inhibition of human platelet aggregation by a low-molecular weight chitosan

    No full text
    Chitosan derivatives were obtained by chemical (MW of 6 kDa, DD 99% - Ch6/99; MW13 kDa, DD 98% - Ch13/98) and enzymatic (MW of 5 kDa, DD 85% - Ch5/85; MW of 10 kDa, DD 85% - Ch10/85) depolymeri-sation of chitosan with a MW of 334 and 1000 kDa. Chitosan derivatives (almost identical MW pairs and different DD) possessed insignificant an-ticoagulant activity, did not promote human platelet aggregation and re-duced ADP or collagen-induced platelet aggregation. The studied sam-ples at a concentration of 2 mg/ml reduced the aggregation of platelets more than twice induced in 2x10-6M and 1x10-5M concentrations; at weak activation in 2x10-6M, the Ch10/85 sample was the most effective. The Ch6/99 and Ch13/98 samples were 20 times more effective at the inhibi-tion of collagen-induced platelet aggregation than the Ch10/85 sample. The latter can be explained by the greater value of positive charge (DD) and polydispersity (Mw/Mn) of chitosan samples obtained by chemical de-polymerisatio

    Growth Story of One Diamond: A Window to the Lithospheric Mantle

    No full text
    A diamond plate cut out of a transparent, colorless octahedral diamond crystal of gem quality, with a small chromite inclusion in the core, sampled from the XXIII CPSU Congress kimberlite (Yakutia, Mirny kimberlite field, vicinities of Mirny city), has been studied by several combined methods: absorption spectroscopy at different wavelengths (UV-visible, near- and mid-IR); photoluminescence, cathodoluminescence, and Raman spectroscopy (local version) and lattice strain mapping; birefringence in cross-polarized light; and etching. The diamond plate demonstrates a complex growth history consisting of four stages: nucleation and growth to an octahedron → habit change to a cuboid → habit change to octahedron-1 → habit change to octahedron-2. The growth history of the diamond records changes in the crystallization conditions at each stage. The revealed heterogeneity of the crystal structure is associated with the distribution and speciation of nitrogen defects. The results of this study have implications for the information value of different techniques as to the diamond structure defects, as well as for the as yet poorly known evolution of the subcontinental lithospheric mantle in the Siberian craton, recorded in the multistage growth of the diamond crystal. At the time of writing, reconstructing the conditions for each stage is difficult. Meanwhile, finding ways for such reconstruction is indispensable for a better understanding of diamond genesis, and details of the lithosphere history

    Trace Elements in Chromian Spinels from Four Siberian Kimberlites

    No full text
    We analysed the major, minor and trace elements chemistry of forty-two Cr-spinels from four Siberian kimberlites. They showed a wide range in Mg# (Mg/(Mg + Fe2+); 0.42–0.78) and Cr# (Cr/(Cr + Al); 0.32–0.92) and a common trend of increasing Cr# with decreasing Mg#. The major element classification schemes suggested that there were spinels deriving from a peridotitic source (Xen) and spinels crystallised from kimberlitic melts (Chr). Laser-Ablation Inductively Coupled Plasma Mass Spectrometry on both groups showed that the trace elements with the highest abundance were Mn (985–3390 ppm), Ni (531–3162 ppm), V (694–2510 ppm) and Zn (475–2230 ppm). Testing the effectiveness of trace elements in determining the source for Cr-spinels, we found out that Cr-spinels crystallised directly from a kimberlitic melt usually showed higher Mn, Ni, Sc and V concentrations with respect to those of peridotitic origin. In addition, using the available partitioning models, we found that the correlations between major elements and Ni, Co, Sc and Ga in the Xen group could be explained by subsolidus equilibration between spinel, olivine and clinopyroxene at 800–1000 °C, thus supporting a peridotitic source for this group. Finally, we calculated the composition of the possible melts in equilibrium with the Cr-spinels of the Chr group, using a selected set of partition coefficients. Calculated abundances of Cu, Ga and Zr were comparable to those of the kimberlite, while V was never close to the kimberlite composition. This simulation highlighted the need for new data on the trace elements partition coefficients between kimberlitic melts and Cr-spinel
    corecore