7 research outputs found

    Evaluating Digital Tools for Sustainable Agriculture using Causal Inference

    Full text link
    In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of climate-smart farming tools. Even though AI-driven digital agriculture can offer high-performing predictive functionalities, it lacks tangible quantitative evidence on its benefits to the farmers. Field experiments can derive such evidence, but are often costly and time consuming. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators. This way, we can increase farmers' trust by enhancing the transparency of the digital agriculture market, and in turn accelerate the adoption of technologies that aim to increase productivity and secure a sustainable and resilient agriculture against a changing climate. As a case study, we perform an empirical evaluation of a recommendation system for optimal cotton sowing, which was used by a farmers' cooperative during the growing season of 2021. We leverage agricultural knowledge to develop a causal graph of the farm system, we use the back-door criterion to identify the impact of recommendations on the yield and subsequently estimate it using several methods on observational data. The results show that a field sown according to our recommendations enjoyed a significant increase in yield (12% to 17%).Comment: Accepted for publication and spotlight presentation at Tackling Climate Change with Machine Learning: workshop at NeurIPS 202

    Paddyr rice mapping based on multi-temporal sentinel-1 and sentinel-2 data in a high performance data analytics environment

    No full text
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Επιστήμη Δεδομένων και Μηχανική Μάθηση

    Assessing the Added Value of Sentinel-1 PolSAR Data for Crop Classification

    No full text
    Crop classification is an important remote sensing task with many applications, e.g., food security monitoring, ecosystem service mapping, climate change impact assessment, etc. This work focuses on mapping 10 crop types at the field level in an agricultural region located in the Spanish province of Navarre. For this, multi-temporal Synthetic Aperture Radar Polarimetric (PolSAR) Sentinel-1 imagery and multi-spectral Sentinel-2 data were jointly used. We applied the Cloude–Pottier polarimetric decomposition on PolSAR data to compute 23 polarimetric indicators and extracted vegetation indices from Sentinel-2 time-series to generate a big feature space of 818 features. In order to assess the relevance of the different features for the crop mapping task, we run a number of scenarios using a Support Vector Machines (SVM) classifier. The model that was trained using only the polarimetric data demonstrates a very promising performance, achieving an overall accuracy over 82%. A genetic algorithm was also implemented as a feature selection method for deriving an optimal feature subset. To showcase the positive effect of using polarimetric data over areas suffering from cloud coverage, we contaminated the original Sentinel-2 time-series with simulated cloud masks. By incorporating the genetic algorithm, we derived a high informative feature subset of 120 optical and polarimetric features, as the corresponding classification model increased the overall accuracy by 5% compared to the model trained only with Sentinel-2 features. The feature importance analysis indicated that apart from the Sentinel-2 spectral bands and vegetation indices, several polarimetric parameters, such as Shannon entropy, second eigenvalue and normalised Shannon entropy are of high value in identifying crops. In summary, the findings of our study highlight the significant contribution of Sentinel-1 PolSAR data in crop classification in areas with frequent cloud coverage and the effectiveness of the genetic algorithm in discovering the most informative features

    Fuzzy clustering for the within-season estimation of cotton phenology.

    No full text
    Crop phenology is crucial information for crop yield estimation and agricultural management. Traditionally, phenology has been observed from the ground; however Earth observation, weather and soil data have been used to capture the physiological growth of crops. In this work, we propose a new approach for the within-season phenology estimation for cotton at the field level. For this, we exploit a variety of Earth observation vegetation indices (derived from Sentinel-2) and numerical simulations of atmospheric and soil parameters. Our method is unsupervised to address the ever-present problem of sparse and scarce ground truth data that makes most supervised alternatives impractical in real-world scenarios. We applied fuzzy c-means clustering to identify the principal phenological stages of cotton and then used the cluster membership weights to further predict the transitional phases between adjacent stages. In order to evaluate our models, we collected 1,285 crop growth ground observations in Orchomenos, Greece. We introduced a new collection protocol, assigning up to two phenology labels that represent the primary and secondary growth stage in the field and thus indicate when stages are transitioning. Our model was tested against a baseline model that allowed to isolate the random agreement and evaluate its true competence. The results showed that our model considerably outperforms the baseline one, which is promising considering the unsupervised nature of the approach. The limitations and the relevant future work are thoroughly discussed. The ground observations are formatted in an ready-to-use dataset and will be available at https://github.com/Agri-Hub/cotton-phenology-dataset upon publication

    Evaluating Digital Agriculture Recommendations with Causal Inference

    No full text
    In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of smart farming tools. Even though recent advancements in AI-driven digital agriculture can offer high-performing predictive functionalities, they lack tangible quantitative evidence on their benefits to the farmers. Field experiments can derive such evidence, but are often costly, time consuming and hence limited in scope and scale of application. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators (e.g., yield in this case). This way, we can increase farmers' trust via enhancing the transparency of the digital agriculture market, and in turn accelerate the adoption of technologies that aim to secure farmer income resilience and global agricultural sustainability against a changing climate. As a case study, we designed and implemented a recommendation system for the optimal sowing time of cotton based on numerical weather predictions, which was used by a farmers' cooperative during the growing season of 2021. We then leverage agricultural knowledge, collected yield data, and environmental information to develop a causal graph of the farm system. Using the back-door criterion, we identify the impact of sowing recommendations on the yield and subsequently estimate it using linear regression, matching, inverse propensity score weighting and meta-learners. The results revealed that a field sown according to our recommendations exhibited a statistically significant yield increase that ranged from 12% to 17%, depending on the method. The effect estimates were robust, as indicated by the agreement among the estimation methods and four successful refutation tests. We argue that this approach can be implemented for decision support systems of other fields, extending their evaluation beyond a performance assessment of internal functionalities

    Recurrent U-Net based dynamic paddy rice mapping in South Korea with enhanced data compatibility to support agricultural decision making

    No full text
    The integration of remote sensing and state-of-the-art deep learning models has enabled the generation of highly accurate semantic segmentation maps to serve the agricultural sector, for which continuous land monitoring is required. However, despite their wide presence in the research field, only a few such products are used in on-site decision-making processes. This is due to their incompatibility with existing datasets that are at the core of current operating processes. In this study, paddy rice mapping in South Korea was examined to determine whether it produces qualified products that can complement on-site surveys and simultaneously be compatible with existing domestic datasets. Cases of early predictions for timely rice supply control were examined using a recurrent U-Net architecture with diverse applications: chronological batch training (CBT), time-inversed padding (TIP), and super-resolution (SR). In addition, the paddy area was confirmed using diverse datasets by standardizing its spatial extent in the definition of each data manual and calibrating the levee error, which was considered a major source of incompatibility. The robustness of the recurrent U-Net in early predictions dramatically increased upon CBT and TIP, recording an F1 score of over 0.75 on July 10, when the on-site survey was performed; meanwhile, the best performance score was 0.81 at the end of the growing period. SR enhanced the spatial details of rice mapping near the levee area, which had an estimated width of 60 cm; however, the area was more similar to that in existing datasets when it was calibrated with the predicted probability of the levee ratio rather than SR. The calibration was scalable from the patch to city level, with the paddy area at both levels recording high R2 for the farm map and statistics (0.99 for both the farm map and statistics at the city level, and 0.93 and 0.95, respectively, at the patch level). This study shows that remote-sensing-based paddy rice mapping can produce not only accurate but also timely and compatible predictions by integrating deep learning applications. The results show that the predictions are compatible with domestic datasets as much as they are with each other; therefore, remote-sensing approaches are expected to be more actively and practically integrated into agricultural decision-making processes
    corecore