2 research outputs found

    A comprehensive study of distributed Denial-of-Service attack with the detection techniques

    Get PDF
    With the dramatic evolution in networks nowadays, an equivalent growth of challenges has been depicted toward implementing and deployment of such networks. One of the serious challenges is the security where wide range of attacks would threat these networks. Denial-of-Service (DoS) is one of the common attacks that targets several types of networks in which a huge amount of information is being flooded into a specific server for the purpose of turning of such server. Many research studies have examined the simulation of networks in order to observe the behavior of DoS. However, the variety of its types hinders the process of configuring the DoS attacks. In particular, the Distributed DoS (DDoS) is considered to be the most challenging threat to various networks. Hence, this paper aims to accommodate a comprehensive simulation in order to figure out and detect DDoS attacks. Using the well-known simulator technique of NS-2, the experiments showed that different types of DDoS have been characterized, examined and detected. This implies the efficacy of the comprehensive simulation proposed by this study

    Self-Sustainable Biomedical Devices Powered by RF Energy: A Review

    No full text
    Wearable and implantable medical devices (IMDs) have come a long way in the past few decades and have contributed to the development of many personalized health monitoring and therapeutic applications. Sustaining these devices with reliable and long-term power supply is still an ongoing challenge. This review discusses the challenges and milestones in energizing wearable and IMDs using the RF energy harvesting (RFEH) technique. The review highlights the main integrating frontend blocks such as the wearable and implantable antenna design, matching network, and rectifier topologies. The advantages and bottlenecks of adopting RFEH technology in wearable and IMDs are reviewed, along with the system elements and characteristics that enable these devices to operate in an optimized manner. The applications of RFEH in wearable and IMDs medical devices are elaborated in the final section of this review. This article summarizes the recent developments in RFEH, highlights the gaps, and explores future research opportunities
    corecore