2 research outputs found

    Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity

    Get PDF
    Targeting gut microbiota with synbiotics (probiotic supplements containing prebiotic components) is emerging as a promising intervention in the comprehensive nutritional approach to reducing obesity. Weight loss resulting from low-carbohydrate high-protein diets can be significant but has also been linked to potentially negative health effects due to increased bacterial fermentation of undigested protein within the colon and subsequent changes in gut microbiota composition. Correcting obesity-induced disruption of gut microbiota with synbiotics can be more effective than supplementation with probiotics alone because prebiotic components of synbiotics support the growth and survival of positive bacteria therein. The purpose of this placebo-controlled intervention clinical trial was to evaluate the effects of a synbiotic supplement on the composition, richness and diversity of gut microbiota and associations of microbial species with body composition parameters and biomarkers of obesity in human subjects participating in a weight loss program. The probiotic component of the synbiotic used in the study contained Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium longum, and Bifidobacterium bifidum and the prebiotic component was a galactooligosaccharide mixture. The results showed no statistically significant differences in body composition (body mass, BMI, body fat mass, body fat percentage, body lean mass, and bone mineral content) between the placebo and synbiotic groups at the end of the clinical trial (3-month intervention, 20 human subjects participating in weight loss intervention based on a low-carbohydrate, high-protein, reduced energy diet). Synbiotic supplementation increased the abundance of gut bacteria associated with positive health effects, especially Bifidobacterium and Lactobacillus, and it also appeared to increase the gut microbiota richness. A decreasing trend in the gut microbiota diversity in the placebo and synbiotic groups was observed at the end of trial, which may imply the effect of the high-protein low-carbohydrate diet used in the weight loss program. Regression analysis performed to correlate abundance of species following supplementation with body composition parameters and biomarkers of obesity found an association between a decrease over time in blood glucose and an increase in Lactobacillus abundance, particularly in the synbiotic group. However, the decrease over time in body mass, BMI, waist circumstance, and body fat mass was associated with a decrease in Bifidobacterium abundance. The results obtained support the conclusion that synbiotic supplement used in this clinical trial modulates human gut microbiota by increasing abundance of potentially beneficial microbial species

    Probiotic-enriched milk and dairy products increase the gut microbiota diversity: A comparative study

    No full text
    Targeting gut microbiota with probiotics has emerged as a promising nutritional approach for the prevention of obesity and metabolic syndrome. Cultured dairy products can be effectively employed for the delivery of probiotics to the gut as well as for the support of growth and survival of probiotic bacteria. The purpose of this study was to characterize the effects of probiotic-enriched pasteurized milk and dairy products (Greek-style yogurt and cottage cheese) of different origins (cow, goat, and camel) on taxonomic composition of the mouse gut microbiota. We hypothesized that cultured dairy products can be an effective vector for the delivery of probiotics to the gut because of its nutritional value, acidic nature, and long shelf-life. Mice were fed a standard low fat, plant polysaccharide-rich (LF/PP) diet supplemented with the probiotic-enriched milk and dairy products for 5 weeks. Next generation sequencing of DNA from mouse fecal samples was used to characterize the bacterial relative abundance. Mice fed a diet supplemented with camel milk demonstrated characteristic changes in the gut microbiota, which included an increase in relative abundance of order Clostridiales and genus Anaerostipes. Mice fed a diet supplemented with the probiotic-enriched cow cheese exhibited an increase in the relative abundance of order Clostridiales, family Ruminococcaceae, and family Lachnospiraceae. The results obtained and their bioinformatics analysis support the conclusion that camel milk and the probiotic cow cheese induce changes in the mouse gut microbiota, which can be characterized as potentially beneficial to health compared to the changes associated with a standard diet. These findings imply that probiotic-enriched milk and dairy products can be highly effective for the delivery and support of probiotic bacteria of the gut
    corecore