13 research outputs found

    Using Butanol Fermentation Wastewater for Biobutanol Production after Removal of Inhibitory Compounds by Micro/Mesoporous Hyper-Cross-Linked Polymeric Adsorbent

    No full text
    In the present study, a novel micro/mesoporous hyper-cross-linked polymeric adsorbent, SY-01, was tested to remove several inhibitory compounds from butanol fermentation wastewater (BFW) for biobutanol production for the first time. Characterization of the SY-01 resin was determined by scanning electron microscopy, nitrogen adsorption desorption isotherms, Fourier transform infrared spectroscopy and elemental analysis. The results showed that the SY-01 resin possessed a high Brunauer-Emmett-Teller surface area (1334 m(2)/g) with large rnicropores and mesopores volumes (0.42 and 0.69 mL/g, respectively). After fixed-bed column adsorption, more than 96.0% of D-xylose and 95.0% of o-glucose remained in the treated butanol fermentation wastewater (TBFW). Acetic acid removal varied from 5.1% to 18.7%, butyric acid removal varied from 64.9% to 100% and color removal was effective between 52.9% and 99.2%. In the column desorption process, 99.4% of acetic acid and 99.1% of butyric acid were recovered by an acetone solution. Furthermore, the TBFW was used as substrate for biobutanol production by Clostridium acetobutylicum CH06. The detoxification by the SY-01 resin column increased the maximum acetone butanol ethanol concentration by 4.08 times and enhanced the total sugar utilization by 1.95 times. In conclusion, our results suggest a new approach for treating the butanol fermentation wastewater
    corecore