1 research outputs found

    Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c02799[EN] Among the possible on-purpose technologies for propene production, direct conversion of butene-rich fractions to propene represents an attractive alternative to conventional routes such as steam cracking or fluid catalytic cracking. Here, we present an approach for designing an efficient ZSM-5-based catalyst for the selective cracking of butenes to propene by properly balancing diffusional and compositional effects. Instead of the large coffin-shaped ZSM-5 crystallites with very high Si/Al ratios generally reported, the optimal catalyst in terms of propene selectivity and catalyst life was found to be a ZSM-5 zeolite with a squared morphology, submicron-sized crystals (0.8 x 0.3 x 1.0 mu m), and a Si/Al molar ratio of around 300. For this crystal conformation, the short dimensions of both sinusoidal and straight channels facilitate propene diffusion and reduce its consumption in consecutive reactions, limiting the formation of C5+ oligomers and aromatics and maximizing propene selectivity. Coffin-type ZSM-5 crystals, with higher diffusional restrictions than square-shaped crystals, show faster catalyst deactivation than the latter, independently of the crystal size and Al content. However, among the ZSM-5 zeolite crystallites with a coffin morphology, the one presenting intergrowths on the (010) face, with a larger proportion of sinusoidal channels, shows a lower aromatic selectivity and deactivation rate, whereas the other two, with straight channels open to the clean (010) faces, favor the formation of aromatics by direct cyclization-dehydrogenation of oligomeric intermediates.This work has been supported by Saudi Aramco, by the Spanish Government-MICINN through "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033-B-I00, and by Generalitat Valenciana (AICO/2019/060). We thank the Electron Microscopy Service of the UPV for their help in sample characterization.Del Campo Huertas, P.; Navarro Villalba, MT.; Shaikh, SK.; Khokhar, MD.; Aljumah, F.; Martínez, C.; Corma Canós, A. (2020). Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts. ACS Catalysis. 10(20):11878-11891. https://doi.org/10.1021/acscatal.0c02799S11878118911020Agency, I. E. The Future of Petrochemicals: Towards More Sustainable Plastics and Fertilisers; IEA Publications: France, 2018, http://www.iea.org (accessed February 2020).Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435-437. doi:10.1038/532435aBereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092Jordá, J. L., Rey, F., Sastre, G., Valencia, S., Palomino, M., Corma, A., … Rodríguez-Velamazán, J. A. (2013). Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process. Angewandte Chemie International Edition, 52(40), 10458-10462. doi:10.1002/anie.201305230Gutiérrez-Sevillano, J. J., Dubbeldam, D., Rey, F., Valencia, S., Palomino, M., Martín-Calvo, A., & Calero, S. (2010). Analysis of the ITQ-12 Zeolite Performance in Propane−Propylene Separations Using a Combination of Experiments and Molecular Simulations. The Journal of Physical Chemistry C, 114(35), 14907-14914. doi:10.1021/jp101744kPalomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358gBlay, V., Miguel, P. J., & Corma, A. (2017). Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science & Technology, 7(24), 5847-5859. doi:10.1039/c7cy01502jCorma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12-46. doi:10.1039/c6cy01886fChen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178Al-Khattaf, S. S.; Palani, A.; Bhuiyan, T. I.; Shaikh, S.; Akhtar, M. N.; Aitani, A. M.; Al-Yami, M. A. Dual Catalyst System for Propene Production. U.S. Patent 10,052,618 B2, 2018.Alshafei, F. H.; Khokhar, M. D.; Sulais, N. A.; Alalouni, M. R.; Shaikh, S. K. Multiple-Stage Catalyst System for Self-Metathesis with Controlled Isomerization and Cracking. U.S. Patent 2018/0,208,524 A1, 2018.Khokhar, M. D.; Alshafei, F. H.; Sulais, N. A.; Shaikh, S. K.; Abudawoud, R. H. Dual Catalyst Processes and Systems for Propene Production. U.S. Patent 10,329,225 B2, 2019.Shaikh, S.; Jamal, A.; Zhang, Z. Systems and Methods for Producing Propene. U.S. Patent 9,834,497 B2, 2017.Arudra, P., Bhuiyan, T. I., Akhtar, M. N., Aitani, A. M., Al-Khattaf, S. S., & Hattori, H. (2014). Silicalite-1 As Efficient Catalyst for Production of Propene from 1-Butene. ACS Catalysis, 4(11), 4205-4214. doi:10.1021/cs5009255Lin, L., Qiu, C., Zhuo, Z., Zhang, D., Zhao, S., Wu, H., … He, M. (2014). Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. Journal of Catalysis, 309, 136-145. doi:10.1016/j.jcat.2013.09.011ZHAO, G., TENG, J., XIE, Z., JIN, W., YANG, W., CHEN, Q., & TANG, Y. (2007). Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. Journal of Catalysis, 248(1), 29-37. doi:10.1016/j.jcat.2007.02.027Blay, V., Epelde, E., Miravalles, R., & Perea, L. A. (2018). Converting olefins to propene: Ethene to propene and olefin cracking. Catalysis Reviews, 60(2), 278-335. doi:10.1080/01614940.2018.1432017Shi, J., Wang, Y., Yang, W., Tang, Y., & Xie, Z. (2015). Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 44(24), 8877-8903. doi:10.1039/c5cs00626kZhao, G.-L., Teng, J.-W., Xie, Z.-K., Yang, W.-M., Chen, Q.-L., & Tang, Y. (2007). Catalytic cracking reactions of C4-olefin over zeolites H-ZSM-5, H-mordenite and H-SAPO-34. Studies in Surface Science and Catalysis, 1307-1312. doi:10.1016/s0167-2991(07)80992-xZhu, X., Liu, S., Song, Y., & Xu, L. (2005). Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al2 ratios. Applied Catalysis A: General, 288(1-2), 134-142. doi:10.1016/j.apcata.2005.04.050Xu, G., Zhu, X., Xie, S., Li, X., Liu, S., & Xu, L. (2009). 1-Butene Cracking to Propene on High Silica HMCM-22: Relations Between Product Distribution and Feed Conversion Under Various Temperatures. Catalysis Letters, 130(1-2), 204-210. doi:10.1007/s10562-009-9864-7Zhu, X., Liu, S., Song, Y., Xie, S., & Xu, L. (2005). Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite. Applied Catalysis A: General, 290(1-2), 191-199. doi:10.1016/j.apcata.2005.05.028Zhao, G., Teng, J., Zhang, Y., Xie, Z., Yue, Y., Chen, Q., & Tang, Y. (2006). Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions. Applied Catalysis A: General, 299, 167-174. doi:10.1016/j.apcata.2005.10.022SAZAMA, P., DEDECEK, J., GABOVA, V., WICHTERLOVA, B., SPOTO, G., & BORDIGA, S. (2008). Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. Journal of Catalysis, 254(2), 180-189. doi:10.1016/j.jcat.2007.12.005Epelde, E., Gayubo, A. G., Olazar, M., Bilbao, J., & Aguayo, A. T. (2014). Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chemical Engineering Journal, 251, 80-91. doi:10.1016/j.cej.2014.04.060Ibáñez, M., Epelde, E., Aguayo, A. T., Gayubo, A. G., Bilbao, J., & Castaño, P. (2017). Selective dealumination of HZSM-5 zeolite boosts propylene by modifying 1-butene cracking pathway. Applied Catalysis A: General, 543, 1-9. doi:10.1016/j.apcata.2017.06.008Epelde, E., Gayubo, A. G., Olazar, M., Bilbao, J., & Aguayo, A. T. (2014). Intensifying Propylene Production by 1-Butene Transformation on a K Modified HZSM-5 Zeolite-Catalyst. Industrial & Engineering Chemistry Research, 53(12), 4614-4622. doi:10.1021/ie500082vEpelde, E., Santos, J. I., Florian, P., Aguayo, A. T., Gayubo, A. G., Bilbao, J., & Castaño, P. (2015). Controlling coke deactivation and cracking selectivity of MFI zeolite by H3PO4 or KOH modification. Applied Catalysis A: General, 505, 105-115. doi:10.1016/j.apcata.2015.07.022Zhu, X., Liu, S., Song, Y., & Xu, L. (2005). Butene Catalytic Cracking to Propene and Ethene over Potassium Modified ZSM-5 Catalysts. Catalysis Letters, 103(3-4), 201-210. doi:10.1007/s10562-005-7155-5BLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011Lv, J., Hua, Z., Ge, T., Zhou, J., Zhou, J., Liu, Z., … Shi, J. (2017). Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking. Microporous and Mesoporous Materials, 247, 31-37. doi:10.1016/j.micromeso.2017.03.037Wang, Z., Jiang, G., Zhao, Z., Feng, X., Duan, A., Liu, J., … Gao, J. (2009). Highly Efficient P-Modified HZSM-5 Catalyst for the Coupling Transformation of Methanol and 1-Butene to Propene. Energy & Fuels, 24(2), 758-763. doi:10.1021/ef9009907XUE, N., CHEN, X., NIE, L., GUO, X., DING, W., CHEN, Y., … XIE, Z. (2007). Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5. Journal of Catalysis, 248(1), 20-28. doi:10.1016/j.jcat.2007.02.022Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112Gao, X., Tang, Z., Lu, G., Cao, G., Li, D., & Tan, Z. (2010). Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sciences, 12(7), 1278-1282. doi:10.1016/j.solidstatesciences.2010.04.020Mitchell, S., Boltz, M., Liu, J., & Pérez-Ramírez, J. (2017). Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catalysis Science & Technology, 7(1), 64-74. doi:10.1039/c6cy01009aShi, J., Zhao, G., Teng, J., Wang, Y., & Xie, Z. (2018). Morphology control of ZSM-5 zeolites and their application in Cracking reaction of C4 olefin. Inorganic Chemistry Frontiers, 5(11), 2734-2738. doi:10.1039/c8qi00686eAl-Khattaf, S. S.; Palani, A.; Aitani, A. M. Catalytic Hydrocracking of Light Olefins. U.S. Patent 9,783,464 B2, 2017.Johnson, D. L.; Nariman, K. E.; Ware, R. A. Catalytic Production of Light Olefins Rich in Propene. U.S. Patent 6,222,087 B1, 2001.Wang, C., Zhang, L., Huang, X., Zhu, Y., Li, G. (Kevin), Gu, Q., … Ma, D. (2019). Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nature Communications, 10(1). doi:10.1038/s41467-019-12285-4Fu, D., Heijden, O., Stanciakova, K., Schmidt, J. E., & Weckhuysen, B. M. (2020). Disentangling Reaction Processes of Zeolites within Single‐Oriented Channels. Angewandte Chemie International Edition, 59(36), 15502-15506. doi:10.1002/anie.201916596Xomeritakis, G., & Tsapatsis, M. (1999). Permeation of Aromatic Isomer Vapors through Oriented MFI-Type Membranes Made by Secondary Growth. Chemistry of Materials, 11(4), 875-878. doi:10.1021/cm9811343Van der Pol, A. J. H. P., & van Hooff, J. H. C. (1992). Parameters affecting the synthesis of titanium silicalite 1. Applied Catalysis A: General, 92(2), 93-111. doi:10.1016/0926-860x(92)80309-zTang, X., Zhou, H., Qian, W., Wang, D., Jin, Y., & Wei, F. (2008). High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst. Catalysis Letters, 125(3-4), 380-385. doi:10.1007/s10562-008-9564-8Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5Zhang, X., Liu, D., Xu, D., Asahina, S., Cychosz, K. A., Agrawal, K. V., … Tsapatsis, M. (2012). Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science, 336(6089), 1684-1687. doi:10.1126/science.1221111Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288Liu, C., Kong, D., & Guo, H. (2014). The morphology control of zeolite ZSM-5 by regulating the polymerization degree of silicon and aluminum sources. Microporous and Mesoporous Materials, 193, 61-68. doi:10.1016/j.micromeso.2014.03.015Zhang, F.-Z., Fuji, M., & Takahashi, M. (2005). In Situ Growth of Continuous b-Oriented MFI Zeolite Membranes on Porous α-Alumina Substrates Precoated with a Mesoporous Silica Sublayer. Chemistry of Materials, 17(5), 1167-1173. doi:10.1021/cm048644jKox, M. H. F., Stavitski, E., & Weckhuysen, B. M. (2007). Nonuniform Catalytic Behavior of Zeolite Crystals as Revealed by In Situ Optical Microspectroscopy. Angewandte Chemie International Edition, 46(20), 3652-3655. doi:10.1002/anie.200700246Roeffaers, M. B. J., Ameloot, R., Baruah, M., Uji-i, H., Bulut, M., De Cremer, G., … De Vos, D. E. (2008). Morphology of Large ZSM-5 Crystals Unraveled by Fluorescence Microscopy. Journal of the American Chemical Society, 130(17), 5763-5772. doi:10.1021/ja7113147Roeffaers, M. B. J., Ameloot, R., Bons, A.-J., Mortier, W., De Cremer, G., de Kloe, R., … Sels, B. F. (2008). Relating Pore Structure to Activity at the Subcrystal Level for ZSM-5: An Electron Backscattering Diffraction and Fluorescence Microscopy Study. Journal of the American Chemical Society, 130(41), 13516-13517. doi:10.1021/ja8048767Koegler, J. H., van Bekkum, H., & Jansen, J. C. (1997). Growth model of oriented crystals of zeolite Si-ZSM-5. Zeolites, 19(4), 262-269. doi:10.1016/s0144-2449(97)00088-2Treps, L., Gomez, A., de Bruin, T., & Chizallet, C. (2020). Environment, Stability and Acidity of External Surface Sites of Silicalite-1 and ZSM-5 Micro and Nano Slabs, Sheets, and Crystals. ACS Catalysis, 10(5), 3297-3312. doi:10.1021/acscatal.9b05103Zeng, G., Chen, C., Li, D., Hou, B., & Sun, Y. (2013). Exposure of (001) planes and (011) planes in MFI zeolite. CrystEngComm, 15(18), 3521. doi:10.1039/c3ce40142aRoeffaers, M. B. J., Sels, B. F., Uji-i, H., Blanpain, B., L’hoëst, P., Jacobs, P. A., … De Vos, D. E. (2007). Space- and Time-Resolved Visualization of Acid Catalysis in ZSM-5 Crystals by Fluorescence Microscopy. Angewandte Chemie International Edition, 46(10), 1706-1709. doi:10.1002/anie.200604336Díaz, I., Kokkoli, E., Terasaki, O., & Tsapatsis, M. (2004). Surface Structure of Zeolite (MFI) Crystals. Chemistry of Materials, 16(25), 5226-5232. doi:10.1021/cm0488534Corma, A., & Orchillés, A. V. (2000). Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 35-36, 21-30. doi:10.1016/s1387-1811(99)00205-xLi, J., Li, T., Ma, H., Sun, Q., Li, C., Ying, W., & Fang, D. (2018). Kinetics of coupling cracking of butene and pentene on modified HZSM-5 catalyst. Chemical Engineering Journal, 346, 397-405. doi:10.1016/j.cej.2018.04.061Ma, Y., Cai, D., Li, Y., Wang, N., Muhammad, U., Carlsson, A., … Wei, F. (2016). The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study. RSC Advances, 6(78), 74797-74801. doi:10.1039/c6ra19073aWang, N., Sun, W., Hou, Y., Ge, B., Hu, L., Nie, J., … Wei, F. (2018). Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. Journal of Catalysis, 360, 89-96. doi:10.1016/j.jcat.2017.12.024Sarazen, M. L., Doskocil, E., & Iglesia, E. (2016). Effects of Void Environment and Acid Strength on Alkene Oligomerization Selectivity. ACS Catalysis, 6(10), 7059-7070. doi:10.1021/acscatal.6b02128Bortnovsky, O., Sazama, P., & Wichterlova, B. (2005). Cracking of pentenes to C2–C4 light olefins over zeolites and zeotypes. Applied Catalysis A: General, 287(2), 203-213. doi:10.1016/j.apcata.2005.03.037Gobin, O. C., Reitmeier, S. J., Jentys, A., & Lercher, J. A. (2009). Comparison of the Transport of Aromatic Compounds in Small and Large MFI Particles. The Journal of Physical Chemistry C, 113(47), 20435-20444. doi:10.1021/jp907444cGobin, O. C., Reitmeier, S. J., Jentys, A., & Lercher, J. A. (2009). Diffusion pathways of benzene, toluene and p-xylene in MFI. Microporous and Mesoporous Materials, 125(1-2), 3-10. doi:10.1016/j.micromeso.2009.01.025DEROUANE, E. (1980). A novel effect of shape selectivity: Molecular traffic control in zeolite ZSM-5. Journal of Catalysis, 65(2), 486-489. doi:10.1016/0021-9517(80)90328-0Iwase, Y., Sakamoto, Y., Shiga, A., Miyaji, A., Motokura, K., Koyama, T., & Baba, T. (2012). Shape-Selective Catalysis Determined by the Volume of a Zeolite Cavity and the Reaction Mechanism for Propylene Production by the Conversion of Butene Using a Proton-Exchanged Zeolite. The Journal of Physical Chemistry C, 116(8), 5182-5196. doi:10.1021/jp212549jOno, Y., Kitagawa, H., & Sendoda, Y. (1987). Transformation of but-1-ene into aromatic hydrocarbons over ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(9), 2913. doi:10.1039/f19878302913Coelho, A., Caeiro, G., Lemos, M. A. N. D. A., Lemos, F., & Ribeiro, F. R. (2013). 1-Butene oligomerization over ZSM-5 zeolite: Part 1 – Effect of reaction conditions. Fuel, 111, 449-460. doi:10.1016/j.fuel.2013.03.066Aloise, A., Catizzone, E., Migliori, M., B.Nagy, J., & Giordano, G. (2017). Catalytic behavior in propane aromatization using GA-MFI catalyst. Chinese Journal of Chemical Engineering, 25(12), 1863-1870. doi:10.1016/j.cjche.2017.04.016Song, L., & Rees, L. V. C. (2000). Adsorption and diffusion of cyclic hydrocarbon in MFI-type zeolites studied by gravimetric and frequency-response techniques. Microporous and Mesoporous Materials, 35-36, 301-314. doi:10.1016/s1387-1811(99)00229-2Voorhies, A. (1945). Carbon Formation in Catalytic Cracking. Industrial & Engineering Chemistry, 37(4), 318-322. doi:10.1021/ie50424a010Fogler, H. S. Elements of Chemical Reaction Engineering; Prentice Hall Profesional: United States, 2006; Chapter 10, Section 10.7, p 717
    corecore