2,161 research outputs found
Recommended from our members
Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly
The rapid development of solar cells based on lead halide perovskites (LHPs) has prompted very active research activities in other closely-related fields. Colloidal nanostructures of such materials display superior optoelectronic properties. Especially, one-dimensional (1D) LHPs nanowires show anisotropic optical properties when they are highly oriented. However, the ionic nature makes them very sensitive to external environment, limiting their large scale practical applications. Here, we introduce an amphiphilic block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP), to chemically modify the surface of colloidal CsPbBr3 nanowires. The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water. Taking advantage of the stability enhancement, we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires, and studied their anisotropic optical properties. [Figure not available: see fulltext.]
Recommended from our members
Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots.
A phase transition within the ligand shell of core/shell quantum dots is studied in the prototypical system of colloidal CdSe/CdS quantum dots with a ligand shell composed of bound oleate (OA) and octadecylphosphonate (ODPA). The ligand shell composition is tuned using a ligand exchange procedure and quantified through proton NMR spectroscopy. Temperature-dependent photoluminescence spectroscopy reveals a signature of a phase transition within the organic ligand shell. Surprisingly, the ligand order to disorder phase transition triggers an abrupt increase in the photoluminescence quantum yield (PLQY) and full-width at half-maximum (FWHM) with increasing temperature. The temperature and width of the phase transition show a clear dependence on ligand shell composition, such that QDs with higher ODPA fractions have sharper phase transitions that occur at higher temperatures. In order to gain a molecular understanding of the changes in ligand ordering, Fourier transform infrared and vibrational sum frequency generation spectroscopies are performed. These measurements confirm that an order/disorder transition in the ligand shell tracks with the photoluminescence changes that accompany the ligand phase transition. The phase transition is simulated through a lattice model that suggests that the ligand shell is well-mixed and does not have completely segregated domains of OA and ODPA. Furthermore, we show that the unsaturated chains of OA seed disorder within the ligand shell
Recommended from our members
Real time imaging of two-dimensional iron oxide spherulite nanostructure formation
The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view. Spherulite structures with radial fibrillar branches have been found in various solids; however, their growth mechanisms remain poorly understood. Here, we report real time imaging of the formation of two-dimensional (2D) iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy (TEM). By tracking the growth trajectories, we show the characteristics of the reaction front and growth kinetics. Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes (5.5–8.5 nm). The radius of a spherulite nanostructure increases linearly with time at the early stage, transitioning to nonlinear growth at the later stage. Furthermore, a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches. The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth. A growth model is further established, which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth. [Figure not available: see fulltext.]
Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals
We introduce a new, highly sensitive, and simple heterodyne optical method
for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order
of magnitude improvement of the signal is achieved compared to previous
methods. This allows for the unprecedented detection of individual small
absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent
semiconductor nanocrystals. The measured signals are in agreement with a
calculation based on the scattering field theory from a photothermal-induced
modulated index of refraction profile around the nanoparticle
New Mechanism for Electronic Energy Relaxation in Nanocrystals
The low-frequency vibrational spectrum of an isolated nanometer-scale solid
differs dramatically from that of a bulk crystal, causing the decay of a
localized electronic state by phonon emission to be inhibited. We show,
however, that an electron can also interact with the rigid translational motion
of a nanocrystal. The form of the coupling is dictated by the equivalence
principle and is independent of the ordinary electron-phonon interaction. We
calculate the rate of nonradiative energy relaxation provided by this mechanism
and establish its experimental observability.Comment: 4 pages, Submitted to Physical Review
An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes
We obtain an effective parametrization of the bulk electronic structure of
InP within the Tight Binding scheme. Using these parameters, we calculate the
electronic structure of InP clusters with the size ranging upto 7.5 nm. The
calculated variations in the electronic structure as a function of the cluster
size is found to be in excellent agreement with experimental results over the
entire range of sizes, establishing the effectiveness and transferability of
the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at
http://sscu.iisc.ernet.in/~sampan/publications.htm
Plasmonic atoms and plasmonic molecules
The proposed paradigm of plasmonic atoms and plasmonic molecules allows one
to describe and predict the strongly localized plasmonic oscillations in the
clusters of nanoparticles and some other nanostructures in uniform way.
Strongly localized plasmonic molecules near the contacting surfaces might
become the fundamental elements (by analogy with Lego bricks) for a
construction of fully integrated opto-electronic nanodevices of any complexity
and scale of integration.Comment: 30 pages, 16 figure
Evolution of the electronic structure with size in II-VI semiconductor nanocrystals
In order to provide a quantitatively accurate description of the band gap
variation with sizes in various II-VI semiconductor nanocrystals, we make use
of the recently reported tight-binding parametrization of the corresponding
bulk systems. Using the same tight-binding scheme and parameters, we calculate
the electronic structure of II-VI nanocrystals in real space with sizes ranging
between 5 and 80 {\AA} in diameter. A comparison with available experimental
results from the literature shows an excellent agreement over the entire range
of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.
Self-directed growth of AlGaAs core-shell nanowires for visible light applications
Al(0.37)Ga(0.63)As nanowires (NWs) were grown in a molecular beam epitaxy
system on GaAs(111)B substrates. Micro-photoluminescence measurements and
energy dispersive X-ray spectroscopy indicated a core-shell structure and Al
composition gradient along the NW axis, producing a potential minimum for
carrier confinement. The core-shell structure formed during the growth as a
consequence of the different Al and Ga adatom diffusion lengths.Comment: 20 pages, 7 figure
1D Exciton Spectroscopy of Semiconductor Nanorods
We have theoretically shown that optical properties of semiconductor nanorods
are controlled by 1D excitons. The theory, which takes into account anisotropy
of spacial and dielectric confinement, describes size dependence of interband
optical transitions, exciton binding energies. We have demonstrated that the
fine structure of the ground exciton state explains the linear polarization of
photoluminescence. Our results are in good agreement with the measurements in
CdSe nanorods
- …