26 research outputs found

    Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells

    Get PDF
    The Sp/Kriippel-like factor (Sp/KIf) family is comprised of around 25 zinc finger transcription factors that recognize CACCC boxes and GC-rich elements. We have investigated basic Kruppel-like factor (Bklf/Klf3) and show that in erythroid tissues its expression is highly dependent on another family member, erythroid Kruppel-like factor (Eklf/Kif1). We observe that Bklf mRNA is significantly reduced in erythroid tissues from Eklf-null murine embryos. We find that Bklf is driven primarily by two promoters, a ubiquitously active GC-rich upstream promoter, la, and an erythroid downstream promoter, 1b. Transcripts from the two promoters encode identical proteins. Interestingly, both the ubiquitous and the erythroid promoter are dependent on Eklf in erythroid cells. Eklf also activates both promoters in transient assays. Experiments utilizing an inducible form of Eklf demonstrate activation of the endogenous Bklf gene in the presence of an inhibitor of protein synthesis. The kinetics of activation are also consistent with Bklf being a direct Eklf target. Chromatin immunoprecipitation assays confirm that Eklf associates with both Bklf promoters. Eklf is typically an activator of transcription, whereas Bklf is noted as a repressor. Our results support the hypothesis that feedback cross-regulation occurs within the Sp/Klf family in vivo

    PU.1 and Haematopoietic Cell Fate: Dosage Matters

    Get PDF
    The ETS family transcription factor PU.1 is a key regulator of haematopoietic differentiation. Its expression is dynamically controlled throughout haematopoiesis in order to direct appropriate lineage specification. Elucidating the biological role of PU.1 has proved challenging. This paper will discuss how a range of experiments in cell lines and mutant and transgenic mouse models have enhanced our knowledge of the mechanisms by which PU.1 drives lineage-specific differentiation during haematopoiesis

    doi:10.1155/2011/501464 Review Article Cellular Reprogramming toward the Erythroid Lineage

    Get PDF
    Copyright Ā© 2011 Laura J. Norton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Haemoglobinopathies such as thalassaemia and sickle cell disease present a major health burden. Currently, the main forms of treatment for these diseases are packed red blood cell transfusions and the administration of drugs which act to nonspecifically reactivate the production of foetal haemoglobin. These treatments are ongoing throughout the life of the patient and are associated with a number of risks, such as limitations in available blood for transfusion, infections, iron overload, immune rejection, and side effects associated with the drug treatments. The field of cellular reprogramming has advanced significantly in the last few years and has recently culminated in the successful production of erythrocytes in culture. This paper will discuss cellular reprogramming and its potential relevance to the treatment of haemoglobinopathies

    Targeted Disruption of the Basic KrĆ¼ppel-Like Factor Gene (Klf3) Reveals a Role in Adipogenesis ā–æ ā€ 

    Get PDF
    KrĆ¼ppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic KrĆ¼ppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpĪ± promoter. We find that C/ebpĪ± is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpĪ± promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis
    corecore