20 research outputs found

    Infants' neural responses to facial emotion in the prefrontal cortex are correlated with temperament: a functional near-infrared spectroscopy study

    Get PDF
    Accurate decoding of facial expressions is critical for human communication, particularly during infancy, before formal language has developed. Different facial emotions elicit distinct neural responses within the first months of life. However, there are broad individual differences in such responses, so that the same emotional expression can elicit different brain responses in different infants. In this study, we sought to investigate such differences in the processing of emotional faces by analyzing infants’s cortical metabolic responses to face stimuli and examining whether individual differences in these responses might vary as a function of infant temperament. Seven-month-old infants (N = 24) were shown photographs of women portraying happy expressions, and neural activity was recorded using functional near-infrared spectroscopy (fNIRS). Temperament data were collected using the Revised Infant Behavior Questionnaire Short Form, which assesses the broad temperament factors of Surgency/Extraversion (S/E), Negative Emotionality (NE), and Orienting/Regulation (O/R). We observed that oxyhemoglobin (oxyHb) responses to happy face stimuli were negatively correlated with infant temperament factors in channels over the left prefrontal cortex (uncorrected for multiple comparisons). To investigate the brain activity underlying this association, and to explore the use of fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with respect to temperament groups. Results showed preferential activation of the left hemisphere in low-NE infants in response to smiling faces. These results suggest that individual differences in temperament are associated with differential prefrontal oxyHb responses to faces. Overall, these analyses contribute to our current understanding of face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal asymmetry, and illuminate the neural correlates of face processing as modulated by temperament

    Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants

    Get PDF
    Infant face processing becomes more selective during the first year of life as a function of varying experience with distinct face categories defined by species, race, and age. Given that any individual face belongs to many such categories (e.g. A young Caucasian man's face) we asked how the neural selectivity for one aspect of facial appearance was affected by category membership along another dimension of variability. 6-month-old infants were shown upright and inverted pictures of either their own mother or a stranger while event-related potentials (ERPs) were recorded. We found that the amplitude of the P400 (a face-sensitive ERP component) was only sensitive to the orientation of the mother's face, suggesting that “tuning” of the neural response to faces is realized jointly across multiple dimensions of face appearance

    Neural correlates of facial emotion processing in infancy

    No full text
    In the present study we examined the neural correlates of facial emotion processing in the first year of life using ERP measures and cortical source analysis. EEG data were collected cross-sectionally from 5- (N = 49), 7- (N = 50), and 12-month-old (N = 51) infants while they were viewing images of angry, fearful, and happy faces. The N290 component was found to be larger in amplitude in response to fearful and happy than angry faces in all posterior clusters and showed largest response to fear than the other two emotions only over the right occipital area. The P400 and Nc components were found to be larger in amplitude in response to angry than happy and fearful faces over central and frontal scalp. Cortical source analysis of the N290 component revealed greater cortical activation in the right fusiform face area in response to fearful faces. This effect started to emerge at 5 months and became well established at 7 months, but it disappeared at 12 months. The P400 and Nc components were primarily localized to the PCC/Precuneus where heightened responses to angry faces were observed. The current results suggest the detection of a fearful face in infants' brain can happen shortly (~200-290 ms) after the stimulus onset, and this process may rely on the face network and develop substantially between 5 to 7 months of age. The current findings also suggest the differential processing of angry faces occurred later in the P400/Nc time window, which recruits the PCC/Precuneus and is associated with the allocation of infants' attention

    Infants’ experience-dependent processing of male and female faces: Insights from eye tracking and event-related potentials

    Get PDF
    The goal of the present study was to investigate infants’ processing of female and male faces. We used an event-related potential (ERP) priming task, as well as a visual-paired comparison (VPC) eye tracking task to explore how 7-month-old “female expert” infants differed in their responses to faces of different genders. Female faces elicited larger N290 amplitudes than male faces. Furthermore, infants showed a priming effect for female faces only, whereby the N290 was significantly more negative for novel females compared to primed female faces. The VPC experiment was designed to test whether infants could reliably discriminate between two female and two male faces. Analyses showed that infants were able to differentiate faces of both genders. The results of the present study suggest that 7-month olds with a large amount of female face experience show a processing advantage for forming a neural representation of female faces, compared to male faces. However, the enhanced neural sensitivity to the repetition of female faces is not due to the infants’ inability to discriminate male faces. Instead, the combination of results from the two tasks suggests that the differential processing for female faces may be a signature of expert-level processing

    Early adversity and neural correlates of executive function: implications for academic adjustment

    No full text
    a b s t r a c t Early adversity can negatively impact the development of cognitive functions, although little is known about whether such effects can be remediated later in life. The current study examined one facet of executive functioning -inhibitory control -among children who experienced institutional care and explored the impact of a foster care intervention within the context of the Bucharest Early Intervention Project (BEIP). Specifically, a go/nogo task was administered when children were eight years old and behavioral and event-related potential (ERP) measures were collected. Results revealed that children assigned to care as usual (i.e. institutional care) were less accurate and exhibited slower neural responses compared to children assigned to the foster care intervention and children who had never been institutionalized. However, children in both the care as usual and foster care groups exhibited diminished attention processing of nogo cues as assessed via P300 amplitude. Foster care children also showed differential reactivity between correct and error responses via the error-related negativity (ERN) as compared to children in the care as usual group. Combined, the results highlight perturbations in neural sources of behavioral and attention problems among children experiencing early adversity. Potential implications for academic adjustment in at risk children are discussed
    corecore