883 research outputs found
SENSE: A comparison of photon detection efficiency and optical crosstalk of various SiPM devices
This paper describes a comparison of photon detection efficiency and optical
crosstalk measurements performed by three partners: Geneva University, Catania
Observatory and Nagoya University. The measurements were compared for three
different SiPM devices with different active areas: from 9 up to 93.6
produced by Hamamatsu. The objective of this work is to establish the
measurements and analysis procedures for calculating the main SiPM parameters
and their precision. This work was done in the scope of SENSE project which
aims to build roadmap for the last developments in field of sensors for low
light level detection
Development of a strategy for calibrating the novel SiPM camera of the SST-1M telescope proposed for the Cherenkov Telescope Array
CTA will comprise a sub-array of up to 70 small size telescopes (SSTs) at the
southern array. The SST-1M project, a 4 m-diameter Davies Cotton telescope with
9 degrees FoV and a 1296 pixels SiPM camera, is designed to meet the
requirements of the next generation ground based gamma-ray observatory CTA in
the energy range above 3 TeV. Silicon photomultipliers (SiPM) cameras of
gamma-ray telescopes can achieve good performance even during high night sky
background conditions. Defining a fully automated calibration strategy of SiPM
cameras is of great importance for large scale production validation and online
calibration. The SST-1M sub-consortium developed a software compatible with CTA
pipeline software (CTApipe). The calibration of the SST-1M camera is based on
the Camera Test Setup (CTS), a set of LED boards mounted in front of the
camera. The CTS LEDs are operated in pulsed or continuous mode to emulate
signal and night sky background respectively. Continuous and pulsed light data
analysis allows us to extract single pixel calibration parameters to be used
during CTA operation.Comment: All CTA contributions at arXiv:1709.0348
Recommended from our members
Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU
The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes toward the neutrino mass ordering. The approach pursued by the 20 kt medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated νe produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Δm312=m32-m12 within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at >5σ on a timescale of 3-7 years - even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis
Recommended from our members
Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data.
This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1 TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of 2.9σ after accounting for statistical trials from the entire catalog. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the northern catalog are inconsistent with background at 3.3σ significance. The southern catalog is consistent with background. These results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector
Recommended from our members
Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube
Efficient treatment of systematic uncertainties that depend on a large number of nuisance parameters is a persistent difficulty in particle physics and astrophysics experiments. Where low-level effects are not amenable to simple parameterization or re-weighting, analyses often rely on discrete simulation sets to quantify the effects of nuisance parameters on key analysis observables. Such methods may become computationally untenable for analyses requiring high statistics Monte Carlo with a large number of nuisance degrees of freedom, especially in cases where these degrees of freedom parameterize the shape of a continuous distribution. In this paper we present a method for treating systematic uncertainties in a computationally efficient and comprehensive manner using a single simulation set with multiple and continuously varied nuisance parameters. This method is demonstrated for the case of the depth-dependent effective dust distribution within the IceCube Neutrino Telescope
Recommended from our members
Search for sources of astrophysical neutrinos using seven years of icecube cascade events
Low-background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as ∼1 TeV. Previously we showed that, even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions - especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this data set is particularly well suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment to date. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy
Recommended from our members
Design and performance of the first IceAct demonstrator at the South Pole
In this paper we describe the first results of IceAct, a compact imaging air-Cherenkov telescope operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector
Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array
The foreseen implementations of the Small Size Telescopes (SST) in CTA will
provide unique insights into the highest energy gamma rays offering fundamental
means to discover and under- stand the sources populating the Galaxy and our
local neighborhood. Aiming at such a goal, the SST-1M is one of the three
different implementations that are being prototyped and tested for CTA. SST-1M
is a Davies-Cotton single mirror telescope equipped with a unique camera
technology based on SiPMs with demonstrated advantages over classical
photomultipliers in terms of duty-cycle. In this contribution, we describe the
telescope components, the camera, and the trigger and readout system. The
results of the commissioning of the camera using a dedicated test setup are
then presented. The performances of the camera first prototype in terms of
expected trigger rates and trigger efficiencies for different night-sky
background conditions are presented, and the camera response is compared to
end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348
Recommended from our members
A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube
We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and 1 repeating FRB. The first improves on a previous IceCube analysis - searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV - by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search; therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope
- …
