52 research outputs found

    Assembly of specialised chromatin at Fission Yeast Centromeres

    Get PDF
    Despite the conserved essential function of centromeres, centromeric DNA is not conserved between species. There is strong evidence indicating that centromeres are epigenetically regulated. Although centromeres normally assemble on preferred sequences, these sequences are neither necessary nor sufficient for centromere assembly. For instance, neocentromeres can form upon sequences that previously showed no centromere function. The presence of the histone H3 variant, CENP-A, is thought to be the epigenetic mark that specifies centromere identity. We aim to understand how CENP-A assembly is influenced by sequence and by chromatin context. Schizosaccharomyces pombe centromeres are composed of a central domain which is assembled in CENP-A chromatin and forms the kinetochore, flanked by the heterochromatic (H3K9me2) outer repeat regions. We have previously shown that heterochromatin is required for establishment of CENP-A chromatin, but not for its maintenance. Our analyses suggest that histone acetyltransferases and deacetylases influence CENP-A establishment. In addition, analysis of requirements for CENP-A establishment lead us to propose that a key property of central domain sequences is their ability to direct an environment of low quality pervasive transcription that is permissive for CENP-A chromatin establishment. Genome sequencing of three additional Schizosaccharomyces (S. octosporus, S. japonicus and S. cryophilus) species allowed partial assembly of putative centromere regions. In order to fully assemble the centromeres of these species we are employing PacBio sequencing of long reads in conjunction with analysis of CENP-A and H3K9me2 ChIP-seq to define chromatin domains. Intriguingly, although there is no homology between the centromere sequences of the four Schizosaccharomyces, the organization and architecture are similar. We are investigating the hypothesis that despite the lack of sequence conservation, the Schizosaccharomyces centromeres possess conserved properties that promote assembly of CENP-A chromatin and heterochromatin.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation

    Get PDF
    Fission yeast centromeres are composed of two domains: the central core and the outer repeats. Although both regions are required for full centromere function, the central core has a distinct chromatin structure and is likely to underlie the kinetochore itself, as it is associated with centromere-specific proteins. Genes placed within either region are transcriptionally silenced, reflecting the formation of a functional kinetochore complex and flanking centromeric heterochromatin. Here, transcriptional silencing was exploited to identify components involved in central core silencing and kinetochore assembly or structure. The resulting sim (silencing in the middle of the centromere) mutants display severe chromosome segregation defects. sim2+ encodes a known kinetochore protein, the centromere-specific histone H3 variant Cnp1CENP-A. sim4+ encodes a novel essential coiled-coil protein, which is specifically associated with the central core region and is required for the unusual chromatin structure of this region. Sim4 coimmunoprecipitates with the central core component Mis6 and, like Mis6, affects Cnp1CENP-A association with the central domain. Functional Mis6 is required for Sim4 localization at the kinetochore. Our analyses illustrate the fundamental link between silencing, chromatin structure, and kinetochore function, and establish defective silencing as a powerful approach for identifying proteins required to build a functional kinetochore

    Establishment of centromere identity is dependent on nuclear spatial organization

    Get PDF
    The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-A(Cnp1) incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-A(Cnp1) overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-A(Cnp1) assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-A(Cnp1) incorporation. We demonstrate that heterochromatin-independent de novo CENP-A(Cnp1) chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-A(Cnp1) assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-A(Cnp1) incorporation because target sequences are exposed to high levels of CENP-A(Cnp1) and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity

    A mutation in γ-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein Pkl1p

    Get PDF
    This is the publisher's version, also available electronically from "http://www.molbiolcell.org".Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. γ-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in γ-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30°C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant γ-tubulin is like the wild-type protein. Prediction of γ-tubulin structure indicates that non-α/β-tubulin protein–protein interactions could be affected. The kinesin-like protein (klp)Pkl1p localizes to the spindle poles and spindle and is essential for viability of the γ-tubulin mutant and in multicopy for normal cell morphology at 30°C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for γ-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of γ-tubulin that involves non-tubulin protein–protein interactions, presumably with a second motor, MAP, or MTOC component

    Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4

    Get PDF
    The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-ACnp1 chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-ACnp1 can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-ACnp1 chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-ACnp1 associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-ACnp1 for assembly into central domain chromatin, resulting in less CENP-ACnp1 and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-ACnp1 influence the extent of DNA at centromeres that is packaged in CENP-ACnp1 chromatin and the composition of this chromatin. Thus, CENP-ACnp1 chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-ACnp1 and other core histones

    Factors That Promote H3 Chromatin Integrity during Transcription Prevent Promiscuous Deposition of CENP-A(Cnp1) in Fission Yeast

    Get PDF
    Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-A(Cnp1) deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-A(Cnp1) incorporation at non-centromeric sites. FACT has little or no effect on CENP-A(Cnp1) assembly at endogenous centromeres where CENP-A(Cnp1) is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-A(Cnp1) at specific loci, including subtelomeric regions, where CENP-A(Cnp1) is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-A(Cnp1) chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-A(Cnp1) to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-A(Cnp1) chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification

    Restricted epigenetic inheritance of H3K9 methylation

    Get PDF
    Post-translational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. H3K9 methylation is essential for heterochromatin formation, however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Utilizing releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorised inheritance of heterochromatin
    • …
    corecore