9 research outputs found

    Regulatory B cell-specific interleukin-10 is dispensable for atherosclerosis development in mice.

    Get PDF
    OBJECTIVE: To determine the role of regulatory B cell-derived interleukin (IL)-10 in atherosclerosis. APPROACH AND RESULTS: We created chimeric Ldlr(-/-) mice with a B cell-specific deficiency in IL-10, and confirmed that purified B cells stimulated with lipopolysaccharide failed to produce IL-10 compared with control Ldlr(-/-) chimeras. Mice lacking B-cell IL-10 demonstrated enhanced splenic B-cell numbers but no major differences in B-cell subsets, T cell or monocyte distribution, and unchanged body weights or serum cholesterol levels compared with control mice. After 8 weeks on high-fat diet, there were no differences in aortic root or aortic arch atherosclerosis. In addition to plaque size, plaque composition (macrophages, T cells, smooth muscle cells, and collagen) was similar between groups. CONCLUSIONS: In contrast to its prominent regulatory role in many immune-mediated diseases and its proposed modulatory role in atherosclerosis, B cell-derived IL-10 does not alter atherosclerosis in mice.This work was funded by the British Heart Foundation (to Z.M.). M. N. has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765.This is the author accepted manuscript. The final version is available from American Heart Association at http://dx.doi.org/10.1161/ATVBAHA.115.305568

    Regulatory B cell-specific interleukin-10 is dispensable for atherosclerosis development in mice

    Get PDF
    Objective: To determine the role of regulatory B cell derived interleukin (Il)-10 in atherosclerosis. Approach and Results: We created chimeric Ldlr-/- mice with a B cell-specific deficiency in Il-10, and confirmed that purified B cells stimulated with LPS failed to produce IL-10 compared to control Ldlr-/- chimeras. Mice lacking B cell Il-10 demonstrated enhanced splenic B cell numbers but no major differences in B cell subsets, T cell or monocyte distribution, and unchanged body weights or serum cholesterol levels compared to control mice. After 8 weeks on high fat diet, there were no differences in aortic root or aortic arch atherosclerosis. In addition to plaque size, plaque composition (macrophages, T cells, smooth muscle cells and collagen) was similar between groups. Conclusions: In contrast to its prominent regulatory role in many immune-mediated diseases and its proposed modulatory role in atherosclerosis, B cell derived Il-10 does not alter atherosclerosis in mice.This work was funded by the British Heart Foundation (to Z.M.). M. N. has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765.This is the author accepted manuscript. The final version is available from American Heart Association at http://dx.doi.org/10.1161/ATVBAHA.115.305568

    Type-2 innate lymphoid cells control the development of atherosclerosis in mice.

    Get PDF
    Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet

    Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury.

    Get PDF
    Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease

    Selenoprotein deficiency disorder predisposes to aortic aneurysm formation

    No full text
    Abstract Aortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy. Aortas from patients and animal models exhibit raised cellular reactive oxygen species, oxidative DNA damage and VSMC apoptosis. Antioxidant exposure or chelation of iron prevents oxidative damage in patient’s cells and aortopathy in the zebrafish model. Our observations suggest a key role for oxidative stress and cell death, including via ferroptosis, in mediating aortic degeneration
    corecore