SUPPLEMENTARY INFORMATION

Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury

Anna K Uryga^{1#}, Mandy OJ Grootaert^{1#}, Abel M Garrido¹, Sebnem Oc¹, Kirsty Foote¹, Joel Chappell¹, Alison Finigan¹, Francesca Rossiello², Fabrizio d'Adda di Fagagna^{2,3}, Dimitra Aravani¹, Helle F Jorgensen¹, Martin R Bennett¹

¹Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK

²FIRC Institute of Molecular Oncology Foundation, IFOM Foundation, Milan, Italy ³Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, 2700, Italy

Supplementary Figure 1

Supplementary Figure 1. SA β G activity in human VSMCs expressing an empty vector or TRF2^{T188A} Human VSMCs infected with an empty vector (EV) or lentivirus expressing TRF2^{T188A}, and analysed for the senescence marker SA β G. Low-power (top, scale bar=150µm) and high-power (bottom, scale bar= 50µm) representative images of SA β G-positive cells.

Supplementary Figure 2. Micronuclei in TRF2^{T188A} VSMCs

a) Examples of micronuclei (white arrowheads) seen at low power (upper panels) or high power view of inset image (lower panels) in TRF2^{T188A} VSMCs. Scale bars=20μm and 7.5μm (insets).
b) Examples of micronuclei containing telomere signals by TELO-FISH in TRF2^{T188A} VSMCs (red arrowheads). High power view is shown on the right. Scale bars=20μm and 12.5μm (insets).

Supplementary Figure 3. Doxorubicin-induced premature senescence promotes SASP

a) Telo-FISH and b) quantification of Telomere⁺ micronuclei (MN)/cell in control cells or those undergoing doxo24h treatment or doxo-induced SIPs (Doxo1d+21d). DAPI (white) and telo-FISH (yellow). Arrows indicate MN. Scale bars=10µm and 1.25µm (inset). c) Relative mRNA expression of selected cytokines in control hVSMCs or those undergoing doxo-induced SIPS (Doxo1d+21d). n=4-7 independent experiments. d) Western blot for TBK1, p65 NF-κB and their phosphorylated forms and p50 and p105 NF-kB members in control hVSMCs or those undergoing doxo-induced SIPS. Data shown represent Means±SEM, n=3-5 independent experiments, ns-non significant (p>0.05), unpaired, two-tailed Student's t-test or Mann-Whitney U test.

Supplementary Figure 4. Doxorubicin-induced premature senescence promotes SASP through cGAS-STING-TBK1 pathway

a) Western blot for cGAS, P-TBK1 and TBK1 in control hVSMCs or those undergoing doxo-induced SIPS transfected with non-targeting (NT)- or *cGAS*-siRNA. **b)** Relative mRNA expression of IL1 α , IL8 and CCL20 in control hVSMCs or those undergoing doxo-induced SIPS transfected with non-targeting (NT)- or *cGAS*-siRNA. Data shown represent Means±SEM, n=3-5 independent experiments, ns-non significant (p>0.05), 1-way ANOVA with Bonferroni multiple corrections.

Supplementary Figure 5. VSMC labeling efficiency in TRF2^{T188A} mice and littermate controls.

a) Schematic of $SM22\alpha$ - $TRF2^{T188A}/Myh11$ - Cre^{ERTM} and Rosa26-Confetti transgenic constructs. b) Right common carotid artery (RCCA) sections derived from $TRF2^{T188A}$ mice and littermate controls. Scale bar=200µm. c) Percentage of total confetti⁺ cells and d) each confetti reporter color quantified on longitudinal sections of unligated RCCA of $TRF2^{T188A}$ animals and littermate controls. Data shown in (c-d) represent Means±SEM, n≥6 mice for each group, ns-non significant (p>0.05), Mann-Whitney U test.

Supplementary Figure 6. TRF2^{T188A} promotes outward remodeling in response to injury a) Internal elastic lamina, b) external elastic lamina and c) lumen area of Control (Ctr) or *TRF2^{T188A}* mice using six serial sections 100 μ m apart (left panels). Right panels represent maximum area. Data represent Means±SEM, n≥5 mice for group, ns-non significant (p>0.05), Mann-Whitney U test.

Supplementary Figure 7. Enhanced infiltration of lymphocytes and macrophages in TRF2^{T188A} mice.

LCCA cryosections of *TRF2^{T188A}* and control mice 28d following carotid ligation stained with **a**) CD3 (magenta) or **b**) CD68 (magenta) and counterstained with DAPI (white). Outlined regions show cluster of cells that are CD3⁺ or CD68⁺. Scale bars=30 μ m and 4.8 μ m (inset).

Uncropped gels

Fig 1j

75 25 TRF2 50 50 - 37 1 Dave & Dove

- 50

250

- 150

,21 **—** 75 Мус p21 25 γ-Η2ΑΧ 25 - 50 20 15 p16 25 EVTA DOK My & Dek Actin 15 Loading control **—** 75 Adam p53 50 — 50 — 38 Loading Actin P53 - 37 control 3.50 53BP1 250 **-** 150

25 20 15

50

27

75

50

37

Loading Actin control 50

Fig 4d

Fig 4f

Supplementary Fig 3d

Supplementary Fig 4a

Human DNA primers	
IL1α	Fw 5'- ACTGCCCAAGATGAAGACCA -3'
	Rv 5'- TGGTCTCACTACCTGTGATGG -3'
IL1β	Fw 5'- TCGCCAGTGAAATGATGGCT -3'
	Rv 5'- TGGAAGGAGCACTTCATCTGTT -3'
IL8	Fw 5'- AGAGAGCTCTGTCTGGACCC -3'
	Rv 5'- CTCAGCCCTCTTCAAAAACTTCT -3'
IL6	Fw 5'- CATCCTCGACGGCATCTCAG -3'
	Rv 5'- TCACCAGGCAAGTCTCCTCA -3'
CCL2	Fw 5'- CTCAGCCAGATGCAATCAATG -3'
	Rv 5'- CTTCTTTGGGACACTTGCTGC -3'
CCL20	Fw 5'- AACCATGTGCTGTACCAAGAGT -3'
	Rv 5'- AAGTTGCTTGCTTCTGATTCGC -3'
CXCL10	Fw 5'- CCAGAATCGAAGGCCATCAA -3'
	Rv 5'- CATTTCCTTGCTAACTGCTTTCAG -3'
IRF3	Fw 5'- TCGTGATGGTCAAGGTTGT-3'
	Rv 5'- AGGTCCACAGTATTCTCCAG-3'
IRF7	Fw 5'- CCTCTCCAGATGCCAGTCCC -3'
	Rv 5'- AAGGAGCCACTCTCCGAACA -3'
ISG56	Fw 5'- CAAAGGGCAAAACGAGGCAG -3'
	Rv 5'- CCCAGGCATAGTTTCCCCAG -3'
p16	Fw 5'- CATAGATGCCGCGGAAGGT -3'
	Rv 5'- AAGTTTCCCGAGGTTTCTCAGA -3'
p21	Fw 5'- GACTCTCAGGGTCGAAAACG -3'
	Rv 5'- GGATTAGGGCTTCCTCTTGG -3'
RPL13A	Fw 5'- CGAGGTTGGCTGGAAGTACC -3'
	Rv 5'- CCGTAGCCTCATGAGCTGTT -3'
TeloC (for RT)	Rv 5'- CCCTAACCCTAA -3'
TeloG (for RT)	Rv 5'- TAGGGTTAGGGTTAGGG -3'
Telo (for qPCR)	Fw 5'- CGGTTTGTTTGGGTTTGGGTTTGCCTTTGCCTTTGGGTT -3'
	Rv 5'- GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT -3'
RPP0	Fw 5'- TTCATTGTGGGAGCAGAC -3'
RPP0	Rv 5'- CAGCAGTTTCTCCAGAGC -3'

Supplementary Table 1

List of QPCR primers