5 research outputs found

    A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs), have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs). In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval.</p> <p>Methods</p> <p>We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE) for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR.</p> <p>Results</p> <p>Among the patients from Costa Rica, an atypical <it>de novo </it>deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears), single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb). Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed.</p> <p>Conclusions</p> <p>From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a frequency of about 0.3% in patients ascertained for unexplained intellectual disability and congenital anomalies. This atypical deletion reduces the minimal interval for the syndrome from 1.75 Mb to 766 kb, implicating a reduced number of genes (15 versus 38). Sequencing of genes in the 15q24 interval in large ASD and intellectual disability samples may identify mutations of etiologic importance in the development of these disorders.</p

    Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: Efficient identification of known microduplications and identification of a novel microduplication in ASMT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications.</p> <p>Methods</p> <p>In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region.</p> <p>Results</p> <p>MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, <it>de novo </it>duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include <it>GABRB3 </it>and <it>ATP10A </it>in one case, and <it>MKRN3</it>, <it>MAGEL2 </it>and <it>NDN </it>in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the <it>ASPA </it>gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the <it>TM4SF2 </it>gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the <it>ASMT </it>gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003).</p> <p>Conclusion</p> <p>MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new <it>de novo </it>small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in <it>TM4SF2</it> are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the <it>ASMT </it>locus indicate that further studies of the duplication of the <it>ASMT </it>gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods.</p

    The NRG1 exon 11 missense variant is not associated with autism in the Central Valley of Costa Rica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We are conducting a genetic study of autism in the isolated population of the Central Valley of Costa Rica (CVCR). A novel Neuregulin 1 (NRG1) missense variant (exon 11 G>T) was recently associated with psychosis and schizophrenia (SCZ) in the same population isolate.</p> <p>Methods</p> <p>We genotyped the NRG1 exon 11 missense variant in 146 cases with autism, or autism spectrum disorder, with CVCR ancestry, and both parents when available (N = 267 parents) from 143 independent families. Additional microsatellites were genotyped to examine haplotypes bearing the exon 11 variant.</p> <p>Results</p> <p>The NRG1 exon 11 G>T variant was found in 4/146 cases including one de novo occurrence. The frequency of the variant in case chromosomes was 0.014 and 0.045 in the parental non-transmitted chromosomes. At least 6 haplotypes extending 0.229 Mb were associated with the T allele. Three independent individuals, with no personal or family history of psychiatric disorder, shared at least a 1 megabase haplotype 5' to the T allele.</p> <p>Conclusion</p> <p>The NRG1 exon 11 missense variant is not associated with autism in the CVCR.</p
    corecore