37 research outputs found

    Losing Sight of the Forest for the Ψ: Beyond the Wavefunction Hegemony

    Get PDF
    Traditionally Ψ is used to stand in for both the mathematical wavefunction (the representation) and the quantum state (the thing in the world). This elision has been elevated to a metaphysical thesis by advocates of the view known as wavefunction realism. My aim in this paper is to challenge the hegemony of the wavefunction by calling attention to a little-known formulation of quantum theory that does not make use of the wavefunction in representing the quantum state. This approach, called Lagrangian quantum hydrodynamics (LQH), is not an approximation scheme, but rather a full alternative formulation of quantum theory. I argue that a careful consideration of alternative formalisms is an essential part of any realist project that attempts to read the ontology of a theory off of the mathematical formalism. In particular, I show that LQH undercuts the central presumption of wavefunction realism and falsifies the claim that one must represent the many-body quantum state as living in a 3n-dimensional configuration space. I conclude by briefly sketching three different realist approaches one could take toward LQH, and argue that both models of the quantum state should be admitted. When exploring quantum realism, regaining sight of the proverbial forest of quantum representations beyond the Ψ is just the first step

    Representing and explaining: the eikonic conception of explanation

    Full text link
    The ontic conception of explanation, according to which explanations are "full-bodied things in the world," is fundamentally misguided. I argue instead for what I call the eikonic conception, according to which explanations are the product of an epistemic activity involving representations of the phenomena to be explained. What is explained in the first instance is a particular conceptualization of the explanandum phenomenon, contextualized within a given research program or explanatory project. I conclude that this eikonic conception has a number of benefits, including making better sense of scientific practice and allowing for the full range of normative constraints on explanation

    Towards a Taxonomy of the Model-Ladenness of Data

    Get PDF
    Model-data symbiosis is the view that there is an interdependent and mutually beneficial relationship between data and models, whereby models are not only data-laden, but data are also model-laden or model filtered. In this paper I elaborate and defend the second, more controversial, component of the symbiosis view. In particular, I construct a preliminary taxonomy of the different ways in which theoretical and simulation models are used in the production of data sets. These include data conversion, data correction, data interpolation, data scaling, data fusion, data assimilation, and synthetic data. Each is defined and briefly illustrated with an example from the geosciences. I argue that model-filtered data are typically more accurate and reliable than the so-called raw data, and hence beneficially serve the epistemic aims of science. By illuminating the methods by which raw data are turned into scientifically useful data sets, this taxonomy provides a foundation for developing a more adequate philosophy of data

    Searching for Noncausal Explanations in a Sea of Causes

    Get PDF
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of regularlyspaced sand ripples. The chapter concludes that even when it comes to everyday "medium-sized dry goods" such as sand ripples, where there is a complete causal story to be told, one can find examples of noncausal scientific explanations

    Searching for Noncausal Explanations in a Sea of Causes

    Get PDF
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of regularlyspaced sand ripples. The chapter concludes that even when it comes to everyday "medium-sized dry goods" such as sand ripples, where there is a complete causal story to be told, one can find examples of noncausal scientific explanations

    Using Models to Correct Data: Paleodiversity and the Fossil Record

    Get PDF
    Despite an enormous philosophical literature on models in science, surprisingly little has been written about data models and how they are constructed. In this paper, I examine the case of how paleodiversity data models are constructed from the fossil data. In particular, I show how paleontologists are using various model-based techniques to correct the data. Drawing on this research, I argue for the following related theses: First, the 'purity' of a data model is not a measure of its epistemic reliability. Instead it is the fidelity of the data that matters. Second, the fidelity of a data model in capturing the signal of interest is a matter of degree. Third, the fidelity of a data model can be improved 'vicariously', such as through the use of post hoc model-based correction techniques. And, fourth, data models, like theoretical models, should be assessed as adequate (or inadequate) for particular purposes

    Towards a Taxonomy of the Model-Ladenness of Data

    Get PDF
    Model-data symbiosis is the view that there is an interdependent and mutually beneficial relationship between data and models, whereby models are not only data-laden, but data are also model-laden or model filtered. In this paper I elaborate and defend the second, more controversial, component of the symbiosis view. In particular, I construct a preliminary taxonomy of the different ways in which theoretical and simulation models are used in the production of data sets. These include data conversion, data correction, data interpolation, data scaling, data fusion, data assimilation, and synthetic data. Each is defined and briefly illustrated with an example from the geosciences. I argue that model-filtered data are typically more accurate and reliable than the so-called raw data, and hence beneficially serve the epistemic aims of science. By illuminating the methods by which raw data are turned into scientifically useful data sets, this taxonomy provides a foundation for developing a more adequate philosophy of data

    Using models to correct data: paleodiversity and the fossil record

    Get PDF
    Despite an enormous philosophical literature on models in science, surprisingly little has been written about data models and how they are constructed. In this paper, I examine the case of how paleodiversity data models are constructed from the fossil data. In particular, I show how paleontologists are using various model-based techniques to correct the data. Drawing on this research, I argue for the following related theses: first, the ‘purity’ of a data model is not a measure of its epistemic reliability. Instead it is the fidelity of the data that matters. Second, the fidelity of a data model in capturing the signal of interest is a matter of degree. Third, the fidelity of a data model can be improved ‘vicariously’, such as through the use of post hoc model-based correction techniques. And, fourth, data models, like theoretical models, should be assessed as adequate for particular purposes

    Understanding scientific types: holotypes, stratotypes, and measurement prototypes

    Get PDF
    At the intersection of taxonomy and nomenclature lies the scientific practice of typification. This practice occurs in biology with the use of holotypes (type specimens), in geology with the use of stratotypes, and in metrology with the use of measurement prototypes. In this paper I develop the first general definition of a scientific type and outline a new philosophical theory of types inspired by Pierre Duhem. I use this general framework to resolve the necessity-contingency debate about type specimens in philosophy of biology, to advance the debate over the myth of the absolute accuracy of standards in metrology, and to address the definition-correlation debate in geology. I conclude that just as there has been a productive synergy between philosophical accounts of natural kinds and scientific taxonomic practices, so too there is much to be gained from developing a deeper understanding of the practices and philosophy of scientific types

    Calibration, Coherence, and Consilience in Radiometric Measures of Geologic Time

    Get PDF
    In 2012, the Geological Time Scale, which sets the temporal framework for studying the timing and tempo of all major geological, biological, and climatic events in Earth’s history, had one-quarter of its boundaries moved in a widespread revision of radiometric dates. The philosophy of metrology helps us understand this episode, and it, in turn, elucidates the notions of calibration, coherence, and consilience. I argue that coherence testing is a distinct activity preceding calibration and consilience, and I highlight the value of discordant evidence and trade-offs scientists face in calibration. The iterative nature of calibration, moreover, raises the problem of legacy data
    corecore