21 research outputs found

    Nonlinear Rheology of Unentangled Polymer Melts Reinforced with High Concentration of Rigid Nanoparticles

    Get PDF
    A scaling model is presented to analyze the nonlinear rheology of unentangled polymer melts filled with high concentration of small spherical particles. Assuming the majority of chains to be reversibly adsorbed to the surface of the particles, we show that the emergence of nonlinearity in the viscoelastic response of the composite system subjected to a 2D shear flow results from stretching of the adsorbed chains and increasing desorption rate of the adsorbed segments due to the imposed deformation. The steady-state shear viscosity of the mixture in nonlinear shear thinning regime follows the power lawwhereis the applied shear rate. At large strain amplitude γ 0, the storage and loss moduli in strain sweep tests scale asandrespectively

    Specific adhesion of vesicles to compliant bio-adhesive substrates

    Full text link

    The Role of Filler-Matrix Interaction on Viscoelastic Response of Biomimetic Nanocomposite Hydrogels

    Get PDF
    The effect of a glutamic acid (negatively charged) peptide (Glu6), which mimics the terminal region of the osteonectin glycoprotein of bone on the shear modulus of a synthetic hydorgel/apatite nanocomposite, was investigated. One end of the synthesized peptide was functionalized with an acrylate group (Ac-Glu6) to covalently attach the peptide to the hydrogel phase of the composite matrix. The addition of Ac-Glu6 to hydroxyapatite (HA) nanoparticles (50 nm in size) resulted in significant reinforcement of the shear modulus of the nanocomposite (∼100% increase in elastic shear modulus). The reinforcement effect of the Glu6 peptide, a sequence in the terminal region of osteonectin, was modulated by the size of the apatite crystals. A molecular model is also proposed to demonstrate the role of polymer-apatite interaction in improving the viscoelastic behavior of the bone mimetic composite. The predictions of the model were compared with the measured dynamic shear modulus of the PLEOF hydrogel reinforced with HA nanoparticles. This predictive model provides a quantitative framework to optimize the properties of reinforced polymer nanocomposites as scaffolds for applications in tissue regeneration
    corecore