22 research outputs found

    Part One: Extracellular Vesicles as Valuable Players in Diabetic Cardiovascular Diseases

    Get PDF
    Extracellular vesicles (EVs) are particles released in the extracellular space from all cell types in physiological and pathological conditions and emerge as a new way of cell-cell communication by transferring their biological contents into target cells. The levels and composition of circulating EVs differ from a normal condition to a pathological one, making them real circulating biomarkers. EVs have a very complex contribution in both health and disease, most likely in relationship between diabetes and cardiovascular disease. The involvement of EVs to the development of cardiovascular complications in diabetes remains an open discussion for therapists. Circulating EVs may offer a continuous access path to circulating information on the disease state and a new perspective in finding a correct diagnosis, in estimating a prognosis and also in applying an effective therapy. Besides their role as biomarkers and targets for therapy, EVs can be exploited as biological tools in influencing the different processes affected in diabetic cardiovascular diseases. This chapter will summarize the current knowledge about EVs as biological vectors modulating diabetic cardiovascular diseases, including atherosclerosis, coronary artery disease, and peripheral arterial disease. Finally, we will point out EVs’ considerable value as clinical biomarkers, therapeutic targets, and potential biomedical tools for the discovery of effective therapy in diabetic cardiovascular diseases

    Part Two: Extracellular Vesicles as a Risk Factor in Neurodegenerative Diseases

    Get PDF
    Extracellular vesicles (EVs) involved in the intercellular communication hold cell-specific cargos that contain proteins, various species of RNA and lipids. EVs are emerging as powerful tools for diagnosis and therapy in most diseases but little is known about their role in central nervous system (CNS) physiology or disease. Considering the extraordinary intricated cytoarchitecture of the brain, the implication of EVs in its pathophysiology is difficult to establish. Blood circulating EVs derived from local or distant vascular cells or EVs released from brain into the cerebrospinal fluid (CSF) may influence the brain activity. EVs released in the blood stream from various tissues may influence the brain by passing through the blood-brain barrier (BBB) or through choroid plexus. Since the choroid plexus has also a clearance role, it might be possible that EVs carrying brain abnormal proteins to pass into the blood can be detected. Thus, considering that EVs are specialized cargos bearing combined signals between cells, they might be an interesting therapy target in the future for both regulating neurogenesis and abnormal protein clearance. We present here data gathered about EVs that may influence the CNS functionality and be involved in most common neurodegenerative diseases

    <i>Plantago media</i> L.—Explored and Potential Applications of an Underutilized Plant

    No full text
    The search of valuable natural compounds should be directed towards alternative vegetal resources, and to the re-discovery of underutilized plants. Belonging to the Plantaginaceae family, the hoary plantain (Plantago media L.) represents one of the lesser studied species from the Plantago genus. The literature study revealed the under-utilization of the hoary plantain, a surprising aspect, considering its widespread. If the composition of Plantago media L. is rather well established, its applications are not nearly studied as for other Plantago species. The goal of the present paper is to summarize the findings regarding the applications of P. media, and, having as starting point the applications of related species, to propose new emerging areas of research, such as the biomedical applications validation through in vivo assays, and the evaluation of its potential towards industrial applications (i.e., development of food or personal care products), pisciculture or zootechny, phytoremediation and other environmental protection applications, or in the nanotechnology area (materials phytosynthesis). The present work constitutes not only a brief presentation of this plant’s present and potential applications, but also an invitation to research groups world-wide to explore the available vegetal resources

    Histopathological Alteration on Marsh Frog Skin Induced by the Action of Dual Gold 960EC Herbicide

    No full text
    The aim of this study was to establish the influence of Dual Gold 960EC herbicide upon skinstructure in marsh frog (Pelophylax ridibundus). [...

    Antioxidant Activity, Polyphenols Content and Antimicrobial Activity of Several Native Pteridophytes of Romania

    No full text
    The aim of this paper was to test the antioxidant activity, polyphenols content and antimicrobial activity of crude extracts obtained from leaves of pteridophyte species commonly found in Romania. The ORAC (Oxygen Radical Absorbance Capacity) of the investigated ferns varied between 421.90 ?mol TE (Trolox equivalents/g FW (fresh weight) in Dryopteris filix-mas and 128.18 ?mol TE/g FW in D. affinis. Methanolic extracts obtained from leaves of ferns have similar antioxidant activity to that of some medicinal plants. Polyphenols content in the leaves of ferns varies between 2340 mg Gallic acid equivalents (GAE)/100 g FW in D. filix-mas and 887 mg GAE/100 g FW in D. affinis. The correlation coefficient between ORAC and the total polyphenol content was R=0.985. This correlation suggests that phenolic compounds are major contributors to the antioxidant activity. The methanolic extract obtained from ferns inhibits the growth of Gram negative Escherichia coli ATCC 25922, Pseudomonas aeruginosa NBJMCC1390, Salmonella abony and Gram positive Staphyllococcus aureus ATCC 25093 and Enterococcus faecalis. The highest antimicrobial activity was determined for the Dryopteris extract. The antimicrobial activity of methanolic extracts obtained from leaves of D. filix-mas and D. affinis is better than the A. filix-femina in the case of Brevibacterium flavum ATCC 14067, Sarcina sp., Bacillus cereus ATCC 1390, Saccharomyces cerevisiae and Aspergillus niger. The tested ferns could be used as cosmetic ingredients, as preservatives in food or in antimicrobial therapy

    Ecotoxicological Studies on the Action of Actara 25 WG Insecticide on Prussian Carp (Carassius gibelio) and Marsh Frog (Pelophylax ridibundus)

    No full text
    The toxic action of the Actara 25 WG insecticide (it contains 25% thiamethoxam as an active substance) in non-lethal doses was studied in two species of aquatic organisms&mdash;the Prussian carp (Carassius gibelio) and the marsh frog (Pelophylax ridibundus)&mdash;at two thermal levels, 6&ndash;8 &deg;C (low temperature) and 18&ndash;20 &deg;C (room temperature), respectively. In the Prussian carp, we recorded decreases in oxygen consumption and stimulation of the respiratory rhythm, changes that were more pronounced in the case of intoxicated fish and when the species were kept at room temperature. The histopathology of the lung in the frog illustrated the thickening of the conjunctival septum, an increase in the number of mucous cells, and an increase in the ratio between the diameter of the nucleus and the diameter of the pneumocyte. All of these changes were more pronounced in the animals kept at higher temperature. Our study looks at the extent to which temperature changes can influence the ability of poikilothermic organisms to withstand the presence of toxic substances in the environment as a result of the impact of the use of insecticides in agriculture. The two tested organisms are a common presence for the study area, which was affected in the last decade by climate change
    corecore