13 research outputs found
Effects of Restraint Stress on Circulating Corticosterone and Met Enkephalin in Chickens: Induction of Shifts in Insulin Secretion and Carbohydrate Metabolism
This study examined the effects of acute restraint stress in the presence or absence of naltrexone on the circulating concentrations of insulin, glucose, Met-enkephalin and corticosterone in 14-week-old chickens [design: 2 sex × 2 stress/non-stress × 2 +/− naltrexone]. In chickens (five male and five females per treatment) subjected to restraint for 30 min, there were increases in the plasma concentrations of corticosterone and Met-enkephalin. The plasma concentrations of insulin and glucose were also increased in the chickens during restraint. Moreover, there were increases in the plasma concentrations of insulin and glucose in the chickens. The patterns of expression of the proenkephalin gene (PENK) in both the anterior pituitary gland and the adrenal gland were very similar to that of plasma Met-enkephalin. There were relationships between the plasma concentrations of corticosterone, Met-enkephalin, insulin and glucose after 30 min of restraint. The effects of naltrexone treatment on both untreated and stressed chickens were also examined, with naltrexone attenuating the stress-induced increases in the plasma concentrations of corticosterone, Met-enkephalin and glucose but not in those of insulin. The present study demonstrates that stress increases insulin secretion in chickens but also induces insulin resistance
Characteristics of physicochemical and rheological properties of chitosan hydrogels based on selected hydroxy acids
Chitosan is a natural cationic polymer that dissolves in an acidic environment and forms gels. Its properties depend on the degree of deacetylation and molecular weight. It is a bioactive compound with antibacterial and film-forming properties that allow to increase the regenerative capacity of the skin. Moreover, it is biodegradable, biocompatible, non-toxic, and stable. In this research, chitosan was combined with mandelic and lactobionic acids which are characterized by biological activity and low toxicity. This combination not only has a positive effect on the chitosan solubility, but it also allows to obtain new biomaterials whose positive features of the base ingredients are enhanced by their synergistic effect. The obtained hydrogels were assessed regarding the interaction of chitosan and hydroxy acid molecules, and the stability of the resulting structures was examined. The research was performed by using rheological methods and IR spectroscopy. Chitosan hydrogels made with mandelic acid are characterized by higher viscosity values, as compared to hydrogels containing lactobionic acid. The samples of the obtained hydrogels stored for 7 days showed no signs of degradation and their viscosity values were constantly increasing, which proves the ongoing process of creating new bonds between hydroxy acid molecules and chitosan chains. After this time, the hydrogels with mandelic acid revealed higher viscosity values in comparison to hydrogels made with lactobionic acid. Based on the obtained IR spectra, the shifts of the characteristic chitosan bands as a result of interaction with the tested hydroxy acids were analyzed
Exogenous orexin-A downregulates luteinizing hormone secretory activity in prepubertal female rats
Introduction: Orexin-A is a neuropeptide synthesized in the lateral hypothalamus. Orexin-A immunoreactive fibres overlap distribution with GnRH neurons. In adult rats, orexin A is known to affect LH secretion via GnRH release modulation. Because data concerning the impact of orexin-A on the hypothalamo-pituitary axis activity are limited, we focused on the involvement of orexin-A and receptors of NPY in the modulation of LH release and LH subunit b (Lhb) mRNA expression in prepubertal female rats.
Material and methods: Forty immature female Wistar rats were divided into 4 groups and received 2 intracerebroventricular (icv) microinjections of: 1 — artificial cerebrospinal fluid (CSF) (controls); 2 — CSF followed by orexin A; 3 — selective NPY receptor antagonist (BIBP) followed by CSF; 4 — BIBP followed by orexin A. One hour after the last microinjection, all rats were decapitated. Trunk blood was collected, and serum was stored at –20°C for the LH RIA examination. The adenohypophysis was immediately excised, flash-frozen, and kept at –80°C for RNA extraction. Real-time PCR amplification was carried out, and relative Lhb gene expression was calculated.
Results: In comparison to the CSF-treated controls with a mean LH serum concentration of 0.40 ± 0.02 ng/mL, the mean LH serum level was diminished both after orexin-A (0.27 ± 0.01 ng/mL) and after BIBP (0.30 ± 0.02 ng/mL) icv microinjections. In the presence of BIBP, orexin-A more effectively inhibited LH release (0.20 ± 0.01 ng/mL) when compared to the BIBP-treated group. Orexin-A and BIBP exerted a consistent inhibitory effect on Lhb mRNA expression levels in the anterior pituitary gland. In comparison to the CSF-treated controls, orexin-A, and BIBP-treated females responded with, respectively, 35% and 40% reduction of Lhb mRNA expression. Orexin-A and BIBP co-administration evoked a further reduction of Lhb gene transcriptional activity.
Conclusions: Orexin-A exerts a down-regulatory effect on LH synthesis and release in immature female rats. Considering that Y1R-oriented down-regulation of endogenous NPY activity did not reverse the suppressive effect of exogenous orexin-A, it might be suggested that NPY and orexin A systems can operate independently to affect gonadotropin activity in the anterior pituitary of the immature female rats.
Complementary Effects of Genetic Variations in LEPR on Body Composition and Soluble Leptin Receptor Concentration after 3-Month Lifestyle Intervention in Prepubertal Obese Children
In obese individuals, weight loss might be affected by variants of the adipokine-encoding genes. We verified whether selected functional single nucleotide polymorphisms in LEP, LEPR and ADIPOQ are associated with changes in serum levels of the respective adipokines and weight loss in 100 prepubertal obese (SDS-BMI > 2) Caucasian children undergoing lifestyle intervention. Frequencies of the -2548G > A LEP, Q223R LEPR, K656N LEPR, -11377C > G and -11426A > G ADIPOQ polymorphisms were analyzed by restriction fragment length polymorphism. Serum adipokine and soluble leptin receptor (sOB-R) concentrations were measured using the ELISA method. Among the analyzed polymorphisms, only LEPR polymorphisms were associated with changes of SDS-BMI or sOB-R concentrations in children after therapy. Carriers of the wild-type K665N and at least one minor Q223R allele had the greatest likelihood of losing weight (OR = 5.09, p = 0.006), an increase in sOB-R (ptrend = 0.022) and decrease in SDS-BMI correlated with the decrease of fat mass (p < 0.001). In contrast, carrying of the wild-type Q223R and at least one minor K665N allele were associated with a decrease in sOB-R concentrations and a decrease in SDS-BMI correlated with a decrease in fat-free mass (p = 0.002). We suggest that the combination of different LEPR variants, not a single variant, might determine predisposition to weight loss in the prepubertal period
Hyperglycemia and diabetes have different impacts on outcome of ischemic and hemorrhagic stroke
Introduction: Stroke is the second leading cause of long-term disability and death worldwide. Diabetes and hyperglycemia may impact the outcome of stroke. We examined the impact of hyperglycemia and diabetes on in-hospital death among ischemic and hemorrhagic stroke patients.
Material and methods : Data from 766 consecutive patients with ischemic (83.15%) and hemorrhagic stroke were analyzed. Patients were classified into four groups: ischemic and diabetic; ischemic and non-diabetic; hemorrhagic and diabetic; and hemorrhagic and non-diabetic. Serum glucose was measured on admission at the emergency department together with biochemical and clinical parameters.
Results : Mean admission glucose in ischemic stroke patients with diabetes was higher than in non-diabetic ones (p < 0.001) and in hemorrhagic stroke patients with diabetes than in those without diabetes (p < 0.05). Mean admission glucose in all patients who died was significantly higher than in patients who survived. In multivariate analysis, the risk factors for outcome in patients with ischemic stroke and without diabetes were age, admission glucose level and estimated glomerular filtration rate (eGFR), while in diabetics they were female gender, admission glucose level, and eGFR; in patients with hemorrhagic stroke and without diabetes they were age and admission glucose levels. The cut-off value in predicting death in patients with ischemic stroke and without diabetes was above 113.5 mg/dl, while in diabetics it was above 210.5 mg/dl.
Conclusions : Hyperglycemia on admission is associated with worsened clinical outcome and increased risk of in-hospital death in ischemic and hemorrhagic stroke patients. Diabetes increased the risk of in-hospital death in hemorrhagic stroke patients, but not in ischemic ones
Nitrogen removal in vertical flow constructed wetlands: influence of bed depth and high nitrogen loadings
The aim of the study was to evaluate the nitrogen removal and its effects on the plant’s growth and leaves morphology. using two subsurface vertical flow (VF bed), with different depths (0.24 m2 × 0.70 m; 0.24 m2 × 0.35 m) and nitrogen load increments. The VF bed were planted with Vetiveria zizanioides, filled with light expanded clay aggregates (Leca®NR 10/20) and fed in parallel mode with synthetic wastewater. High ammonium nitrogen concentration ([NH4+–N] from 68 ± 3 to 290 ± 8 mg L−1) was used without toxicity symptoms in plants, although the effects of ammonium nitrogen load were stopped the growth of the plants. Significant differences between ammonium nitrogen removed in each VF bed obtained for total nitrogen (TNinfl.) ≥ 27 ± 0.8 g m−2 d−1. The nitrification was contributed to ammonium nitrogen removal because was found higher values of nitrate and nitrite in the effluent. These values were more higher in VF bed 1 than in the VF bed 2, since ammonium nitrogen removal were also more higher in VF bed 1 than in the VF bed 2. Total nitrogen mass balance was carried out and the results show that the nitrification/denitrification process occurred with nitrogen plants uptake. It was observed that the VF bed depth has an influence on all nitrogen removal processes. As higher the depth root system it is seemed to favour the creation of zones with different oxidations conditions that allow the nitrogen compounds to be removed intensively