6 research outputs found

    Three-Dimensional Porous Sponges from Collagen Biowastes

    No full text
    Three-dimensional, functional, and porous scaffolds can find applications in a variety of fields. Here we report the synthesis of hierarchical and interconnected porous sponges using a simple freeze-drying technique, employing collagen extracted from animal skin wastes and superparamagnetic iron oxide nanoparticles. The ultralightweight, high-surface-area sponges exhibit excellent mechanical stability and enhanced absorption of organic contaminants such as oils and dye molecules. Additionally, these biocomposite sponges display significant cellular biocompatibility, which opens new prospects in biomedical uses. The approach highlights innovative ways of transforming biowastes into advanced hybrid materials using simple and scalable synthesis techniques

    Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture

    No full text
    Liquid crystal elastomers (LCEs) are unique among shape-responsive materials in that they exhibit large and reversible shape changes and can respond to a variety of stimuli. However, only a handful of studies have explored LCEs for biomedical applications. Here, we demonstrate that LCE nanocomposites (LCE-NCs) exhibit a fast and reversible electromechanical response and can be employed as dynamic substrates for cell culture. A two-step method for preparing conductive LCE-NCs is described, which produces materials that exhibit rapid (response times as fast at 0.6 s), large-amplitude (contraction by up to 30%), and fully reversible shape changes (stable to over 5000 cycles) under externally applied voltages (5–40 V). The electromechanical response of the LCE-NCs is tunable through variation of the electrical potential and LCE-NC composition. We utilize conductive LCE-NCs as responsive substrates to culture neonatal rat ventricular myocytes (NRVM) and find that NRVM remain viable on both stimulated and static LCE-NC substrates. These materials provide a reliable and simple route to materials that exhibit a fast, reversible, and large-amplitude electromechanical response

    Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture

    No full text
    Liquid crystal elastomers (LCEs) are unique among shape-responsive materials in that they exhibit large and reversible shape changes and can respond to a variety of stimuli. However, only a handful of studies have explored LCEs for biomedical applications. Here, we demonstrate that LCE nanocomposites (LCE-NCs) exhibit a fast and reversible electromechanical response and can be employed as dynamic substrates for cell culture. A two-step method for preparing conductive LCE-NCs is described, which produces materials that exhibit rapid (response times as fast at 0.6 s), large-amplitude (contraction by up to 30%), and fully reversible shape changes (stable to over 5000 cycles) under externally applied voltages (5–40 V). The electromechanical response of the LCE-NCs is tunable through variation of the electrical potential and LCE-NC composition. We utilize conductive LCE-NCs as responsive substrates to culture neonatal rat ventricular myocytes (NRVM) and find that NRVM remain viable on both stimulated and static LCE-NC substrates. These materials provide a reliable and simple route to materials that exhibit a fast, reversible, and large-amplitude electromechanical response

    Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture

    No full text
    Liquid crystal elastomers (LCEs) are unique among shape-responsive materials in that they exhibit large and reversible shape changes and can respond to a variety of stimuli. However, only a handful of studies have explored LCEs for biomedical applications. Here, we demonstrate that LCE nanocomposites (LCE-NCs) exhibit a fast and reversible electromechanical response and can be employed as dynamic substrates for cell culture. A two-step method for preparing conductive LCE-NCs is described, which produces materials that exhibit rapid (response times as fast at 0.6 s), large-amplitude (contraction by up to 30%), and fully reversible shape changes (stable to over 5000 cycles) under externally applied voltages (5–40 V). The electromechanical response of the LCE-NCs is tunable through variation of the electrical potential and LCE-NC composition. We utilize conductive LCE-NCs as responsive substrates to culture neonatal rat ventricular myocytes (NRVM) and find that NRVM remain viable on both stimulated and static LCE-NC substrates. These materials provide a reliable and simple route to materials that exhibit a fast, reversible, and large-amplitude electromechanical response

    Solid–Liquid Self-Adaptive Polymeric Composite

    No full text
    A solid–liquid self-adaptive composite (SAC) is synthesized using a simple mixing–evaporation protocol, with poly­(dimethylsiloxane) (PDMS) and poly­(vinylidene fluoride) (PVDF) as active constituents. SAC exists as a porous solid containing a near equivalent distribution of the solid (PVDF)–liquid (PDMS) phases, with the liquid encapsulated and stabilized within a continuous solid network percolating throughout the structure. The pores, liquid, and solid phases form a complex hierarchical structure, which offers both mechanical robustness and a significant structural adaptability under external forces. SAC exhibits attractive self-healing properties during tension, and demonstrates reversible self-stiffening properties under compression with a maximum of 7-fold increase seen in the storage modulus. In a comparison to existing self-healing and self-stiffening materials, SAC offers distinct advantages in the ease of fabrication, high achievable storage modulus, and reversibility. Such materials could provide a new class of adaptive materials system with multifunctionality, tunability, and scale-up potentials

    Hybrid MoS<sub>2</sub>/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites

    No full text
    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS<sub>2</sub>), hexagonal boron nitride (h-BN), and their hybrid (MoS<sub>2</sub>/h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young’s modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS<sub>2</sub>/h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance
    corecore