110 research outputs found

    Nanoscale resolved solid-state electrochemistry: the scanning probe microscopy approach

    Full text link
    The work was financially supported by Russian Science Foundation (Grant 17-72-10144). The equipment of Ural Center for Shared Use “Modern Nanotechnology” Ural Federal University was used

    Investigation local switching and self-organization effects on non-polar cuts of lithium niobate

    Full text link
    The equipment of the Ural Center for Shared Use “Modern Nanotechnology” Ural Federal University was used. The research was made possible by Russian Science Foundation (Grant 14-12-00826)

    Piezoresponse in ferroelectric materials under uniform electric field of electrodes

    Full text link
    The analytical solution for the displacements of an anisotropic piezoelectric material in the uniform electric field is presented for practical use in the “global excitation mode” of piezore-sponse force microscopy. The solution is given in the Wolfram Mathematica interactive program code, allowing the derivation of the expression of the piezoresponse both in cases of the anisotropic and isotropic elastic properties. The piezoresponse’s angular dependencies are analyzed using model lithium niobate and barium titanate single crystals as examples. The validity of the isotropic approximation is verified in comparison to the fully anisotropic solution. The approach developed in the paper is important for the quantitative measurements of the piezoelectric response in nano-materials as well as for the development of novel piezoelectric materials for the sensors/actuators applications. © 2021 by the author. Licensee MDPI, Basel, Switzerland.This research was funded by the Russian Science Foundation, grant number 19-72-10076

    Self-organized domain structure at non-polar cuts of lithium niobate as a result of local switching

    Full text link
    The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University was used

    Correlative confocal Raman and scanning probe microscopy in the ionically active particles of LiMn 2 O 4 cathodes

    Get PDF
    In this contribution, a correlative confocal Raman and scanning probe microscopy approach was implemented to find a relation between the composition, lithiation state, and functional electrochemical response in individual micro-scale particles of a LiMn 2 O 4 spinel in a commercial Li battery cathode. Electrochemical strain microscopy (ESM) was implemented both at a low-frequency (3.5 kHz) and in a high-frequency range of excitation (above 400 kHz). It was shown that the high-frequency ESM has a significant cross-talk with topography due to a tip-sample electrostatic interaction, while the low-frequency ESM yields a response correlated with distributions of Li ions and electrochemically inactive phases revealed by the confocal Raman microscopy. Parasitic contributions into the electromechanical response from the local Joule heating and flexoelectric effect were considered as well and found to be negligible. It was concluded that the low-frequency ESM response directly corresponds to the confocal Raman microscopy data. The analysis implemented in this work is an important step towards the quantitative measurement of diffusion coefficients and ion concentration via strain-based scanning probe microscopy methods in a wide range of ionically active materials. © 2019 by the authors

    Confocal Raman study of electric fields in lithium niobate single crystals

    Full text link
    The research was made possible by Russian Science Foundation (Grant 19-72-10076). The equipment of the Ural Center for Shared Use “Modern nanotechnology” UrFU was used
    corecore