17 research outputs found

    Nonequilibrium self-energies, Ng approach, and heat current of a nanodevice for small bias voltage and temperature

    Get PDF
    Using nonequilibrium renormalized perturbation theory to second order in the renormalized Coulomb repulsion, we calculate the lesser Σ self-energies of the impurity Anderson model, which describes the current through a quantum dot, in the general asymmetric case. While in general a numerical integration is required to evaluate the perturbative result, we derive an analytical approximation for small frequency ω, bias voltage V, and temperature T, which is exact to total second order in these quantities. The approximation is valid when the corresponding energies ℏω, eV, and kBT are small compared to kBTK, where TK is the Kondo temperature. The result of the numerical integration is compared with the analytical one and with Ng approximation, in which Σ are assumed proportional to the retarded self-energy Σr times an average Fermi function. While it fails at T=0 for ℏ|ω|≲eV, we find that the Ng approximation is excellent for kBT>eV/2 and improves for asymmetric coupling to the leads. Even at T=0, the effect of the Ng approximation on the total occupation at the dot is very small. The dependence on ω and V are discussed in comparison with a Ward identity that is fulfilled by the three approaches. We also calculate the heat currents between the dot and any of the leads at finite bias voltage. One of the heat currents changes sign with the applied bias voltage at finite temperature.Fil: Aligia, Armando Angel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Transition between SU(4) and SU(2) Kondo effect

    Get PDF
    Motivated by experiments in nanoscopic systems, we study a generalized Anderson, which consist of two spin degenerate doublets hybridized to a singlet by the promotion of an electron to two conduction bands, as a function of the energy separation d between both doublets. For d¼0 or very large, the model is equivalent to a one-level SU(N) Anderson model, with N¼4 and 2 respectively. We study the evolution of the spectral density for both doublets (r 1s ðoÞ and r 2s ðoÞ) and their width in the Kondo limit as d is varied, using the non-crossing approximation (NCA). As d increases, the peak at the Fermi energy in the spectral density (Kondo peak) splits and the density of the doublet of higher energy r 2s ðoÞ shifts above the Ferrmi energy. The Kondo temperature T K (determined by the half-width at half maximum of the Kondo peak in density of the doublet of lower energy r 1s ðoÞ) decreases dramatically. The variation of T K with d is reproduced by a simple variational calculation.Fil: Tosi, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Roura Bas, Pablo Gines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Out of equilibrium Anderson model: Conductance and Kondo temperature

    Get PDF
    We calculate the conductance through a quantum dot weakly coupled to metallic contacts by means of the Keldysh out of equilibrium formalism. We model the quantum dot with the SU(2) Anderson model and consider the limit of infinite Coulomb repulsion. The interacting system is solved with the numerical diagrammatic Non-Crossing Approximation (NCA) and the conductance is obtained as a function of temperature and gate voltage from differential conductance (dI/dV) curves. We discuss the results in comparison with those from the linear response approach which can be performed directly in equilibrium conditions. Comparison shows that out of equilibrium results are in good agreement with the ones from linear response supporting reliability of the method employed. The last discussion becomes relevant when dealing with general transport models through interacting regions. We also analyze the evolution of conductance vs gate voltage with temperature. While at high temperatures the conductance is peaked, when the Fermi energy coincides with the localized level it presents a plateau at low temperatures as a consequence of the Kondo effect. We discuss different ways to determine Kondo’s temperature.Fil: Tosi, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Roura Bas, Pablo Gines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Llois, Ana Maria. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Fully compensated Kondo effect for a two-channel spin S=1 impurity

    Get PDF
    We study the low-temperature properties of the generalized Anderson impurity model in which two localized configurations, one with two doublets and the other with a triplet, are mixed by two degenerate conduction channels. By using the numerical renormalization group and the noncrossing approximation, we analyze the impurity entropy, its spectral density, and the equilibrium conductance for several values of the model parameters. Marked differences with respect to the conventional one-channel spin s=1/2 Anderson model, which can be traced as hallmarks of an impurity spin S=1, are found in the Kondo temperature, the width and position of the charge-transfer peak, and the temperature dependence of the equilibrium conductance. Furthermore, we analyze the rich effects of a single-ion magnetic anisotropy D on the Kondo behavior. In particular, as shown before, for large enough positive D the system behaves as a "non-Landau" Fermi liquid that cannot be adiabatically connected to a noninteracting system turning off the interactions. For negative D the Kondo effect is strongly suppressed. While the model is suitable for the description of a single Ni impurity embedded in an O-doped Au chain, it is a generic one for S=1 and two channels and might be realized in other nanoscopic systems.Fil: Blesio, Germán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Roura Bas, Pablo Gines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Kondo behavior of anisotropic single atomic spins on a Cu2 N molecular layer

    Get PDF
    Fitting ab initio total energies, obtained within the generalized gradient approximation with spin-orbit coupling and a correction that includes Coulomb repulsion, we calculate the anisotropy parameters D and E of an effective spin model that describes 3d magnetic impurities separated from the Cu(100) surface by a monolayer of Cu2 N. Assuming a general exchange interaction between conduction and 3d electrons we construct an effective Kondo model which depends on D and E. We discuss the specific cases for Mn, Fe, and Co impurities.Fil: Barral, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Roura Bas, Pablo Gines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Llois, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Aligia, Armando Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin

    Heat current across a capacitively coupled double quantum dot

    Get PDF
    We study the heat current through two capacitively coupled quantum dots coupled in series with two conducting leads at different temperatures T L and T R in the spinless case (valid for a high applied magnetic field). Our results are also valid for the heat current through a single quantum dot with strongly ferromagnetic leads pointing in opposite directions (so that the electrons with given spin at the dot can jump only to one lead) or through a quantum dot with two degenerate levels with destructive quantum interference and high magnetic field. Although the charge current is always zero, the heat current is finite when the interdot Coulomb repulsion U is taken into account due to many-body effects. We study the thermal conductance as a function of temperature and the dependence of the thermal current with the couplings to the leads, T L − T R , energy levels of the dots and U , including conditions for which an orbital Kondo regime takes place. When the energy levels of the dots are different, the device has rectifying properties for the thermal current. We find that the ratio between the thermal current resulting from a thermal bias T L > T R and the one from T L < T R is maximized for particular values of the energy levels, one above and the other below the Fermi level.Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Perez Daroca, Diego Raul. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arrachea, Liliana del Carmen. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roura Bas, Pablo Gines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Magnetic properties of chiral EuIr2P2

    Get PDF
    We present a minimal model that provides a description of the magnetic and thermodynamic properties of EuIr2P2. The model contains two exchange coupling parameters, which are calculated using density functional theory, and a local easy-axis magnetic anisotropy term. The classical ground state of the system is a generalization of the well known 120 structure observed in triangular antiferromagnets. Monte Carlo simulations show two phase transitions as a function of the temperature. With increasing temperature, the system transitions from the ground state into a high-entropy collinear antiferromagnet, which in turn at higher temperatures presents a second-order transition to a paramagnetic state. A high enough external magnetic field parallel to the anisotropy axis produces a spin-flop transition at low temperatures. The field also reduces the temperature range of stability of the collinear antiferromagnet phase and leads to a single-phase transition as a function of the temperature. The reported behavior of the specific heat, the magnetization, and the magnetic susceptibility is in agreement with the available experimental data. Finally, we present the magnetic phase diagrams for magnetic fields parallel and perpendicular to the easy axis.Fil: Garcia, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; ArgentinaFil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Franco, Diego Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Cornaglia de la Cruz, Pablo Sebastian. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin

    Exact analytical solution of a time-reversal-invariant topological superconducting wire

    Get PDF
    We consider a model proposed before for a time-reversal-invariant topological superconductor which contains a hopping term t, a chemical potential μ, an extended s-wave pairing Δ, and spin-orbit coupling λ. We show that for |Δ|=|λ|, μ=t=0, the model has an exact analytical solution defining new fermion operators involving nearest-neighbor sites. The many-body ground state is fourfold degenerate due to the existence of two zero-energy modes localized exactly at the first and last sites of the chain. These four states show entanglement in the sense that creating or annihilating a zero-energy mode at the first site is proportional to a similar operation at the last site. By continuity, this property should persist for general parameters. Using these results, we discuss some statements related to the so-called time-reversal anomaly. The addition of a small hopping term t for a chain with an even number of sites breaks the degeneracy, and the ground state becomes unique with an even number of particles. We also consider a small magnetic field B applied to one end of the chain. We compare the many-body excitation energies and spin projection along the spin-orbit direction for both ends of the chains obtained treating t and B as small perturbations with numerical results in a short chain, obtaining good agreement.Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camjayi, Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin
    corecore