320 research outputs found

    Deep spectroscopy of the FUV-optical emission lines from a sample of radio galaxies at z~2.5: metallicity and ionization

    Full text link
    We present long-slit NIR spectra, obtained using the ISAAC instrument at the Very Large Telescope, for nine radio galaxies at z~2.5. One-dimensional spectra have been extracted and cross calibrated with optical spectra from the literature to produce line spectra spanning a rest wavelength of ~1200-7000 A. We have also produced a composite of the rest-frame UV-optical line fluxes of powerful, z~2.5 radio galaxies. We have investigated the relative strengths of Ly-alpha, H-beta, H-alpha, HeII 1640 and HeII 4687, and we find that Av can vary significantly from object to object. In addition, we identify new line ratios to calculate electron temperature: [NeV] 1575/[NeV] 3426, [NeIV] 1602/[NeIV] 2423, OIII] 1663/[OIII] 5008 and [OII] 2471/[OII]3728. We model the emission line spectra and conclude they are best explained by AGN-photoionization with the ionization parameter U varying between objects. Single slab photoionization models are unable to reproduce the high- and the low-ionization lines simultaneously: this may be alleviated either by combining two or more single slab photoionization models with different U, or by using mixed-medium models such as those of Binette, Wilson & Storchi-Bergmann (1996). On the basis of NV/NIV] and NIV]/CIV we argue that shocks make a fractional contribution to the ionization of the EELR. We find that in the EELR of z~2 radio galaxies the N/H abundance ratio is close to its solar value. We conclude that N/H and metallicity do not vary by more than a factor of two in our sample. This is consistent with the idea that massive ellipticals are assembled very early in the history of the universe, and then evolve relatively passively up to the present day.Comment: Accepted for publication by MNRA

    VIMOS-VLT spectroscopy of the giant Ly-alpha nebulae associated with three z~2.5 radio galaxies

    Full text link
    The morphological and spectroscopic properties of the giant (>60 kpc) Ly-alpha nebulae associated with three radio galaxies at z~2.5 (MRC 1558-003, MRC 2025-218 and MRC 0140-257) have been investigated using integral field spectroscopic data obtained with VIMOS on VLT. The morphologies are varied. The nebula of one source has a centrally peaked, rounded appearance. In the other two objects, it consists of two spatial components. The three nebulae are aligned with the radio axis within <30 deg. The total Ly-alpha luminosities are in the range (0.3-3.4) x 1e44 erg s-1. The Ly-alpha spectral profile shows strong variation through the nebulae, with FWHM values in the range ~400-1500 km s-1 and velocity shifts V~120-600 km s-1. We present an infall model which can explain successfully most Ly-alpha morphological and spectroscopic properties of the nebula associated with MRC 1558-003. This adds further support to our previous conclusion that the _quiescent_ giant nebulae associated with this and other high redshift powerful radio galaxies are in infall. A problem for this model is the difficulty to reproduce the large Ly-alpha FWHM values. We have discovered a giant (~85 kpc) Ly-alpha nebula associated with the radio galaxy MRC 0140-257 at z=2.64. It shows strikingly relaxed kinematics (FWHM2) radio galaxies.Comment: 14 pages, 13 figures. Accepted for publication in MNRA

    The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9

    Full text link
    We present a detailed study of the kinematic, chemical and excitation properties of the giant Lyα\alpha emitting nebula and the giant \ion{H}{I} absorber associated with the z=2.92z = 2.92 radio galaxy MRC 0943--242, using spectroscopic observations from VLT/MUSE, VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765 \AA\, -- 6378 \AA\, at z=2.92z = 2.92) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localised compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of super-solar metallicity gas (Z/ZZ/Z_{\odot} = 2.1) by an AGN-like continuum (α\alpha=--1.0) at a moderate ionization parameter (UU = 0.018) gives the best overall fit to the complete X-SHOOTER emission line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the \ion{H}{I} absorption feature across the range log N(\ion{H}{I}/cm2^{-2}) = 15.20 and 19.63, with the two best-fitting occurring near the extreme ends of this range. The extended \ion{H}{I} absorber is blueshifted relative to the emission line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large scale expanding shell.Comment: 25 pages, 18 figures, 10 tables. Accepted for publication in MNRAS. Published: 23 November 201

    The Mini AGN at the Center of the Elliptical Galaxy NGC 4552 with HST

    Get PDF
    The complex phenomenology shown by the UV-bright, variable spike first detected with the Hubble Space Telescope (HST) at the center of the otherwise normal galaxy NGC 4552 is further investigated with both HST imaging (FOC) and spectroscopy (FOS). HST/FOC images taken in 1991, 1993, and 1996 in the near UV have been analyzed in a homogeneous fashion, showing that the central spike has brightened by a factor ~4.5 between 1991 and 1993, and has decreased its luminosity by a factor ~2.0 between 1993 and 1996. FOS spectroscopy extending from the near UV to the red side of the optical spectrum reveals a strong UV continuum over the spectrum of the underlying galaxy, along with several emission lines in both the UV and the optical ranges. In spite of the low luminosity of the UV continuum of the spike (~3*10^5 Lsolar), the spike is definitely placed among AGNs by current diagnostics based on the emission line intensity ratios, being just on the borderline between Seyferts and LINERs. Line profiles are very broad, and both permitted and forbidden lines are best modelled with a combination of broad and narrow components, with FWHM of ~3000 km s^-1 and ~700 km s^-1, respectively. This evidence argues for the variable central spike being produced by a modest accretion event onto a central massive black hole (BH), with the accreted material having possibly being stripped from a a star in a close fly by with the BH. The 1996 broad Halpha luminosity of this mini-AGN is ~5.6*10^37 erg s^-1, about a factor of two less than that of the nucleus of NGC 4395, heretofore considered to be the faintest known AGN.Comment: 40 pages, LaTeX, with 12 PostScript figures. Accepted for publication in the Astrophysical Journa

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    Anisotropic inverse Compton emission in the radio galaxy 3C 265

    Full text link
    We present the results from a Chandra observation of the powerful radio galaxy 3C 265. We detect X-ray emission from the nucleus, the radio hotspots and lobes. In particular, the lobe X-ray emission is well explained as anisotropic inverse Compton scattering of the nuclear photons by the relativistic electrons in the radio lobes; the comparison between radio synchrotron and IC emission yields a magnetic field strength a factor about 2 lower than that calculated under minimum energy conditions. The X-ray spectrum of the nucleus is consistent with that of a powerful, strongly absorbed quasar and the X-ray emission of the south-eastern hotspot can be successfully reproduced by a combination of synchro-self Compton and inverse Compton emission assuming a magnetic field slightly lower than equipartition.Comment: 5 pages, 6 figures, to be published as a Letter on Monthly Notices of the Royal Astronomical Societ
    corecore