81 research outputs found

    Non-Kondo-like Electronic Structure in the Correlated Rare-Earth Hexaboride YbB6_6

    Get PDF
    We present angle-resolved photoemission studies on the rare-earth hexaboride YbB6_6, which has recently been predicted to be a topological Kondo insulator. Our data do not agree with the prediction and instead show that YbB6_6 exhibits a novel topological insulator state in the absence of a Kondo mechanism. We find that the Fermi level electronic structure of YbB6_6 has three 2D Dirac cone like surface states enclosing the Kramers' points, while the f-orbital which would be relevant for the Kondo mechanism is 1\sim1 eV below the Fermi level. Our first-principles calculation shows that the topological state which we observe in YbB6_6 is due to an inversion between Yb dd and B pp bands. These experimental and theoretical results provide a new approach for realizing novel correlated topological insulator states in rare-earth materials.Comment: 5 pages, 4 figures, Submitted in 2014. Published in 2015, Phys. Rev. Lett. 114, 01640

    Surface Versus Bulk Dirac States Tuning in a Three-Dimensional Topological Dirac Semimetal

    Full text link
    Recently, crystalline-symmetry-protected three-dimensional (3D) bulk Dirac semimetal phase has been experimentally identified in a stoichiometric high-mobility compound, Cd3As2. The Dirac state observed in Cd3As2 has been attributed to originate mostly from the bulk state while calculations show that the bulk and surface states overlap over the entire Dirac dispersion energy range. In this study, we unambiguously reveal doping induced evolution of the ground state of surface and bulk electron dynamics in a 3D Dirac semimetal. We develop a systematic technique to isolate the surface and bulk states in Cd3As2, by simultaneously utilizing angle-resolved photoemission spectroscopy (ARPES) and in-situ surface deposition. Our experimental results provide a method for tuning the chemical potential as well as to observe surface states degenerate with bulk states, which will be useful for future applications of 3D Dirac semimetal.Comment: 5 pages, 4 figure

    Bulk crystal growth and electronic characterization of the 3D Dirac Semimetal Na3Bi

    Full text link
    High quality hexagon plate-like Na3Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels (LL) were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals the linear magnetoresistance and Shubnikov-de Haas (SdH) quantum oscillations are observed for the first time.Comment: To be published in a special issue of APL Material

    Momentum space imaging of Cooper pairing in a half-Dirac-gas topological superconductor (a helical 2D topological superconductor)

    Full text link
    Superconductivity in Dirac electrons has recently been proposed as a new platform between novel concepts in high-energy and condensed matter physics. It has been proposed that supersymmetry and exotic quasiparticles, both of which remain elusive in particle physics, may be realized as emergent particles in superconducting Dirac electron systems. Using artificially fabricated topological insulator-superconductor heterostructures, we present direct spectroscopic evidence for the existence of Cooper pairing in a half Dirac gas 2D topological superconductor. Our studies reveal that superconductivity in a helical Dirac gas is distinctly different from that of in an ordinary two-dimensional superconductor while considering the spin degrees of freedom of electrons. We further show that the pairing of Dirac electrons can be suppressed by time-reversal symmetry breaking impurities removing the distinction. Our demonstration and momentum-space imaging of Cooper pairing in a half Dirac gas and its magnetic behavior taken together serve as a critically important 2D topological superconductor platform for future testing of novel fundamental physics predictions such as emergent supersymmetry and quantum criticality in topological systems.Comment: Submitted June'14; Accepted to NaturePhysics, to appear AOP (2014
    corecore