2 research outputs found

    GRB 180418A: A possibly-short GRB with a wide-angle outflow in a faint host galaxy

    Full text link
    We present X-ray and multi-band optical observations of the afterglow and host galaxy of GRB 180418A, discovered by Swift/BAT and Fermi/GBM. We present a reanalysis of the GBM and BAT data deriving durations of the prompt emission of T_90~2.56s and ~1.90s, respectively. Modeling the Fermi/GBM catalog of 1405 bursts (2008-2014) in the Hardness-T_90 plane, we obtain a probability of ~60% that GRB 180418A is a short-hard burst. From a combination of Swift/XRT and Chandra observations, the X-ray afterglow is detected to ~38.5 days after the burst, and exhibits a single power-law decline with F_X proportional to t^-0.98. Late-time Gemini observations reveal a faint r ~24.95 mag host galaxy at an angular offset of ~0.16''. At the likely redshift range of z ~1-1.5, we find that the X-ray afterglow luminosity of GRB 180418A is intermediate between short and long GRBs at all epochs during which there is contemporaneous data, and that GRB 180418A lies closer to the E_({\gamma},peak)-E_({\gamma},iso) correlation for short GRBs. Modeling the multi-wavelength afterglow with the standard synchrotron model, we derive the burst explosion properties and find a jet opening angle of {\theta}_j =>9-14 degrees. If GRB 180418A is a short GRB that originated from a neutron star merger, it has one of the brightest and longest-lived afterglows along with an extremely faint host galaxy. If instead the event is a long GRB that originated from a massive star collapse, it has among the lowest luminosity afterglows, and lies in a peculiar space in terms of the Hardness-T_90 and E_({\gamma},peak)-E_({\gamma},iso) planes

    Heavy element production in a compact object merger observed by JWST

    No full text
    The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GW)2 and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers4–6, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW1708177–12. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe.</p
    corecore