46 research outputs found

    Vaccine-related tweets per country.

    No full text
    During national COVID-19 vaccine campaigns, people continuously engaged on Twitter to receive updates on the latest public health information, and to discuss and share their experiences. During this time, the spread of misinformation was widespread, which threatened the uptake of vaccines. It is therefore critical to understand the reasons behind vaccine misinformation and strategies to mitigate it. The current research aimed to understand the content of misleading tweets and the characteristics of their corresponding accounts. We performed a machine learning approach to identify misinformation in vaccine-related tweets, and calculated the demographic, engagement metrics and bot-like activities of corresponding accounts. We found critical periods where high amounts of misinformation coincided with important vaccine announcements, such as emergency approvals of vaccines. Moreover, we found Asian countries had a lower percentage of misinformation shared compared to Europe and North America. Our results showed accounts spreading misinformation had an overall 10% greater likelihood of bot activity and 15% more astroturf bot activity than accounts spreading accurate information. Furthermore, we found that accounts spreading misinformation had five times fewer followers and three times fewer verified badges than fact-sharing accounts. The findings of this study may help authorities to develop strategies to fight COVID-19 vaccine misinformation and improve vaccine uptake.</div

    Weekly normalized misinformation per country.

    No full text
    x-axis showing the week numbers of 2020 and 2021 and y-axis showing the amount of misinformation that is normalized between 0 and 1 using the popular Min-Max normalization technique. In addition, we annotated the high peaks of plots with the actual numbers of misinformation tweets. Further, we indicated months of December, February, and April with vertical dashed lines in each plot.</p

    Examples of labelling criteria.

    No full text
    During national COVID-19 vaccine campaigns, people continuously engaged on Twitter to receive updates on the latest public health information, and to discuss and share their experiences. During this time, the spread of misinformation was widespread, which threatened the uptake of vaccines. It is therefore critical to understand the reasons behind vaccine misinformation and strategies to mitigate it. The current research aimed to understand the content of misleading tweets and the characteristics of their corresponding accounts. We performed a machine learning approach to identify misinformation in vaccine-related tweets, and calculated the demographic, engagement metrics and bot-like activities of corresponding accounts. We found critical periods where high amounts of misinformation coincided with important vaccine announcements, such as emergency approvals of vaccines. Moreover, we found Asian countries had a lower percentage of misinformation shared compared to Europe and North America. Our results showed accounts spreading misinformation had an overall 10% greater likelihood of bot activity and 15% more astroturf bot activity than accounts spreading accurate information. Furthermore, we found that accounts spreading misinformation had five times fewer followers and three times fewer verified badges than fact-sharing accounts. The findings of this study may help authorities to develop strategies to fight COVID-19 vaccine misinformation and improve vaccine uptake.</div

    Comparing demographics/engagement of misinformation and fact spreaders’ accounts.

    No full text
    Comparison between fact and misinformation in terms of ratio of verified to unverified accounts (top left), ratio of male to female accounts (top middle), ratio of personal to organization accounts (top right), average followers of accounts (bottom left), average friends of accounts (bottom middle), average favourites of accounts (bottom right).</p

    Distribution of misinformation by age group.

    No full text
    During national COVID-19 vaccine campaigns, people continuously engaged on Twitter to receive updates on the latest public health information, and to discuss and share their experiences. During this time, the spread of misinformation was widespread, which threatened the uptake of vaccines. It is therefore critical to understand the reasons behind vaccine misinformation and strategies to mitigate it. The current research aimed to understand the content of misleading tweets and the characteristics of their corresponding accounts. We performed a machine learning approach to identify misinformation in vaccine-related tweets, and calculated the demographic, engagement metrics and bot-like activities of corresponding accounts. We found critical periods where high amounts of misinformation coincided with important vaccine announcements, such as emergency approvals of vaccines. Moreover, we found Asian countries had a lower percentage of misinformation shared compared to Europe and North America. Our results showed accounts spreading misinformation had an overall 10% greater likelihood of bot activity and 15% more astroturf bot activity than accounts spreading accurate information. Furthermore, we found that accounts spreading misinformation had five times fewer followers and three times fewer verified badges than fact-sharing accounts. The findings of this study may help authorities to develop strategies to fight COVID-19 vaccine misinformation and improve vaccine uptake.</div

    Comparing misinformation-spreading and fact-spreading accounts in terms of their bot-like activities.

    No full text
    x-axis shows bot-like activities and y-axis shows the probability of each activity. In the plot, the accounts corresponding with misinformation content are show in orange and the fact-spreading accounts in green.</p

    Labeling guidelines.

    No full text
    During national COVID-19 vaccine campaigns, people continuously engaged on Twitter to receive updates on the latest public health information, and to discuss and share their experiences. During this time, the spread of misinformation was widespread, which threatened the uptake of vaccines. It is therefore critical to understand the reasons behind vaccine misinformation and strategies to mitigate it. The current research aimed to understand the content of misleading tweets and the characteristics of their corresponding accounts. We performed a machine learning approach to identify misinformation in vaccine-related tweets, and calculated the demographic, engagement metrics and bot-like activities of corresponding accounts. We found critical periods where high amounts of misinformation coincided with important vaccine announcements, such as emergency approvals of vaccines. Moreover, we found Asian countries had a lower percentage of misinformation shared compared to Europe and North America. Our results showed accounts spreading misinformation had an overall 10% greater likelihood of bot activity and 15% more astroturf bot activity than accounts spreading accurate information. Furthermore, we found that accounts spreading misinformation had five times fewer followers and three times fewer verified badges than fact-sharing accounts. The findings of this study may help authorities to develop strategies to fight COVID-19 vaccine misinformation and improve vaccine uptake.</div
    corecore