3 research outputs found

    PK/PD Disconnect Observed with a Reversible Endothelial Lipase Inhibitor

    No full text
    Screening of a small set of nonselective lipase inhibitors against endothelial lipase (EL) identified a potent and reversible inhibitor, <i>N</i>-(3-(3,4-dichlorophenyl)­propyl)-3-hydroxy-1-methyl-2-oxo-1,2-dihydropyridine-4-carboxamide (<b>5</b>; EL IC<sub>50</sub> = 61 nM, EL<sub>HDL</sub> IC<sub>50</sub> = 454 nM). Deck mining identified a related hit, <i>N</i>-(3-(3,4-dichlorophenyl)­propyl)-4-hydroxy-1-methyl-5-oxo-2,5-dihydro-1<i>H</i>-pyrrole-3-carboxamide (<b>6a</b>; EL IC<sub>50</sub> = 41 nM, EL<sub>HDL</sub> IC<sub>50</sub> = 1760 nM). Both compounds were selective against lipoprotein lipase (LPL) but nonselective versus hepatic lipase (HL). Optimization of compound <b>6a</b> for EL inhibition using HDL as substrate led to <i>N</i>-(4-(3,4<b>-</b>dichlorophenyl)­butan-2-yl)-1-ethyl-4-hydroxy-5-oxo-2,5-dihydro-1<i>H</i>-pyrrole-3-carboxamide (<b>7c</b>; EL IC<sub>50</sub> = 148 nM, EL<sub>HDL</sub> IC<sub>50</sub> = 218 nM) having improved PK over compound <b>6a</b>, providing a tool molecule to test for the ability to increase HDL-cholesterol (HDL-C) levels in vivo using a reversible EL inhibitor. Compound <b>7c</b> did not increase HDL-C in vivo despite achieving plasma exposures targeted on the basis of enzyme activity and protein binding demonstrating the need to develop more physiologically relevant in vitro assays to guide compound progression for in vivo evaluation
    corecore