2,603 research outputs found

    Effects of Parkinson’s disease on optic flow perception for heading direction during navigation

    Full text link
    Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the effects of PD on the use of optic flow for heading direction, walking parameters, and interlimb coordination during navigation, examining the contributions of OS and spatial frequency (dot density). Twelve individuals with PD without dementia, 18 age-matched normal control adults (NC), and 23 young control adults (YC) walked through a virtual hallway at about 0.8 m/s. The hallway was created by random dots on side walls. Three levels of OS (0.8, 1.2, and 1.8 m/s) and dot density (1, 2, and 3 dots/m2) were presented on one wall while on the other wall, OS and dot density were fixed at 0.8 m/s and 3 dots/m2, respectively. Three-dimensional kinematic data were collected, and lateral drift, walking speed, stride frequency and length, and frequency, and phase relations between arms and legs were calculated. A significant linear effect was observed on lateral drift to the wall with lower OS for YC and NC, but not for PD. Compared to YC and NC, PD veered more to the left under OS and dot density conditions. The results suggest that healthy adults perceive optic flow for heading direction. Heading direction in PD may be more affected by the asymmetry of dopamine levels between the hemispheres and by motor lateralization as indexed by handedness.Published versio

    Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.

    Get PDF
    IntroductionAlthough breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors.MethodsParaffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation.ResultsImmunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.ConclusionsOur findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations

    High expression FUT1 and B3GALT5 is an independent predictor of postoperative recurrence and survival in hepatocellular carcinoma.

    Get PDF
    Cancer may arise from dedifferentiation of mature cells or maturation-arrested stem cells. Previously we reported that definitive endoderm from which liver was derived, expressed Globo H, SSEA-3 and SSEA-4. In this study, we examined the expression of their biosynthetic enzymes, FUT1, FUT2, B3GALT5 and ST3GAL2, in 135 hepatocellular carcinoma (HCC) tissues by qRT-PCR. High expression of either FUT1 or B3GALT5 was significantly associated with advanced stages and poor outcome. Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with high expression of either FUT1 or B3GALT5 (P = 0.024 and 0.001, respectively) and shorter overall survival (OS) for those with high expression of B3GALT5 (P = 0.017). Combination of FUT1 and B3GALT5 revealed that high expression of both genes had poorer RFS and OS than the others (P < 0.001). Moreover, multivariable Cox regression analysis identified the combination of B3GALT5 and FUT1 as an independent predictor for RFS (HR: 2.370, 95% CI: 1.505-3.731, P < 0.001) and OS (HR: 2.153, 95% CI: 1.188-3.902, P = 0.012) in HCC. In addition, the presence of Globo H, SSEA-3 and SSEA-4 in some HCC tissues and their absence in normal liver was established by immunohistochemistry staining and mass spectrometric analysis

    Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.

    Get PDF
    FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer
    • …
    corecore