4 research outputs found

    3D bioprinting and Rigenera® micrografting technology: A possible countermeasure for wound healing in spaceflight

    Get PDF
    Plant and animal life forms have progressively developed mechanisms for perceiving and responding to gravity on Earth, where homeostatic mechanisms require feedback. Lack of gravity, as in the International Space Station (ISS), induces acute intra-generational changes in the quality of life. These include reduced bone calcium levels and muscle tone, provoking skin deterioration. All these problems reduce the work efficiency and quality of life of humans not only during exposure to microgravity (mu G) but also after returning to Earth. This article discusses forthcoming experiments required under gravity and mu G conditions to ensure effective and successful medical treatments for astronauts during long-term space missions, where healthcare is difficult and not guaranteed

    Long-term culture of patient-derived cardiac organoids recapitulated Duchenne muscular dystrophy cardiomyopathy and disease progression

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease which to date is incurable. The major cause of death is dilated cardiomyopathy however, its pathogenesis is unclear as existing cellular and animal models do not fully recapitulate the human disease phenotypes. In this study, we generated cardiac organoids from patient-derived induced pluripotent stem cells (DMD-COs) and isogenic-corrected controls (DMD-Iso-COs) and studied if DMD-related cardiomyopathy and disease progression occur in the organoids upon long-term culture (up to 93 days). Histological analysis showed that DMD-COs lack initial proliferative capacity, displayed a progressive loss of sarcoglycan localization and high stress in endoplasmic reticulum. Additionally, cardiomyocyte deterioration, fibrosis and aberrant adipogenesis were observed in DMD-COs over time. RNA sequencing analysis confirmed a distinct transcriptomic profile in DMD-COs which was associated with functional enrichment in hypertrophy/dilated cardiomyopathy, arrhythmia, adipogenesis and fibrosis pathways. Moreover, five miRNAs were identified to be crucial in this dysregulated gene network. In conclusion, we generated patient-derived cardiac organoid model that displayed DMD-related cardiomyopathy and disease progression phenotypes in long-term culture. We envision the feasibility to develop a more complex, realistic and reliable in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies

    Comparative analysis of different hydrogels for the bioprinting of 3D in vitro skeletal muscle models

    Get PDF
    In this study we demonstrated an application of 3D Bioprinting using different commercially available hydrogels (CELLINK AB, Sweden) with the aim to identify the most suitable biomaterial for the proliferation and differentiation of murine muscle cells (C2C12)

    3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts

    No full text
    Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries—linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications
    corecore