5 research outputs found

    The Global Impact of ITAR on the For-Profit and Non-Profit Space Communities

    Get PDF
    Under the United States Arms Export Control Act, the International Traffic in Arms Regulations (ITAR) control the export of technologies that are specified as defense articles on the United States Munitions List (USML). The Directorate of Defense Trade Controls (DDTC) within the Department of State (DoS) interprets and enforces these regulations in an effort to safeguard national security by denying advanced military technology to potential competitors

    Evaluation of multi-vehicle architectures for the exploration of planetary bodies in the Solar System

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.Cataloged from PDF version of thesis.Includes bibliographical references (pages 193-210).Planetary exploration missions are becoming increasingly complex and expensive due to ever more ambitious scientific and technical goals. On the other hand, budgets in planetary science have suffered from dramatic cuts over the past decade and projections estimate a flat budget of approximately $1.2B/year for the upcoming years. This has led to a desire for a reduction in the risk and complexity, as well as an increase in the robustness and reliability, of planetary exploration vehicles. One of the methods proposed to deal with this issue is the use of distributed, multi-vehicle architectures as a replacement for the traditional large, monolithic systems used in flagship missions. However, mission concept formulation engineers do not possess the tools to include multi-vehicle architectures in their early trade space exploration process. This is mostly due to the fact that these types of architectures cannot be readily evaluated against monolithic systems through the use of traditional mass-based metrics. Furthermore, in multi-vehicle system, architectural decisions about one vehicle, such as instrument or capability selection, quickly propagate through the entire system and impose requirements on the other vehicles. This can be difficult to model without going through detailed point designs. The objective of this thesis is to explore the potential benefits of both spatially and temporally distributed multi-vehicle systems, where the vehicles are heterogeneous, as compared to monolithic systems. Specifically, a set of metrics mapping the effects of using multi-vehicle systems on science benefit, complexity, mass, cost, coverage, productivity and risk are developed. Furthermore, a software tool to simulate the performance of teams of planetary surface vehicles in their operational environment has been built and its use demonstrated. Finally, the framework put forward in this thesis is used to perform several case studies, including a case study on the exploration of the Jovian moon Europa and another on the ascent and return components of a Mars Sample Return mission. From these, distributed systems are shown to provide increased science return and robustness as well as lower development and manufacturing costs as compared to their monolithic equivalents.by Farah Alibay.Ph. D

    SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission

    No full text
    This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated

    Sun Radio Interferometer Space Experiment (SunRISE) Proposal: Status Update

    Get PDF
    We present a proposal for a space-based array, composed of six 6U CubeSats, designed to localize the radio emission associated with coronal mass ejections (CMEs) from the Sun. Radio emission from CMEs is a direct tracer of the particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Furthermore, CME radio emission is quite strong such that only a relatively small number of antennas is required. This type of Heliophysics mission would be inherently cost prohibitive in a traditional spacecraft paradigm. However, the use of CubeSats, accompanied by the miniaturization of subsystem components, enables the development of this concept at lower cost than ever before. We discuss the most recent updates on this mission concept, starting from the science and driving technical requirements. We then focus on the SunRISE concept of operations. The mission would consist of six 6U CubeSats flying in a passive formation in a geostationary graveyard orbit, thus allowing them to form an interferometer while minimizing the impact on operations complexity. We also provide an overview of the ground and flight system design. Finally, we discuss the future trades that would be required if this mission were to be further studied
    corecore