3 research outputs found

    Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing

    No full text
    Realizing the neurological information processing by analyzing the complex data transferring behavior of populations and individual neurons is one of the fast-growing fields of neuroscience and bioelectronic technologies. This field is anticipated to cover a wide range of advanced applications, including neural dynamic monitoring, understanding the neurological disorders, human brain–machine communications and even ambitious mind-controlled prosthetic implant systems. To fulfill the requirements of high spatial and temporal resolution recording of neural activities, electrical, optical and biosensing technologies are combined to develop multifunctional bioelectronic and neuro-signal probes. Advanced two-dimensional (2D) layered materials such as graphene, graphene oxide, transition metal dichalcogenides and MXenes with their atomic-layer thickness and multifunctional capabilities show bio-stimulation and multiple sensing properties. These characteristics are beneficial factors for development of ultrathin-film electrodes for flexible neural interfacing with minimum invasive chronic interfaces to the brain cells and cortex. The combination of incredible properties of 2D nanostructure places them in a unique position, as the main materials of choice, for multifunctional reception of neural activities. The current review highlights the recent achievements in 2D-based bioelectronic systems for monitoring of biophysiological indicators and biosignals at neural interfaces.</jats:p

    Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing

    No full text
    Realizing the neurological information processing by analyzing the complex data transferring behavior of populations and individual neurons is one of the fast-growing fields of neuroscience and bioelectronic technologies. This field is anticipated to cover a wide range of advanced applications, including neural dynamic monitoring, understanding the neurological disorders, human brain–machine communications and even ambitious mind-controlled prosthetic implant systems. To fulfill the requirements of high spatial and temporal resolution recording of neural activities, electrical, optical and biosensing technologies are combined to develop multifunctional bioelectronic and neuro-signal probes. Advanced two-dimensional (2D) layered materials such as graphene, graphene oxide, transition metal dichalcogenides and MXenes with their atomic-layer thickness and multifunctional capabilities show bio-stimulation and multiple sensing properties. These characteristics are beneficial factors for development of ultrathin-film electrodes for flexible neural interfacing with minimum invasive chronic interfaces to the brain cells and cortex. The combination of incredible properties of 2D nanostructure places them in a unique position, as the main materials of choice, for multifunctional reception of neural activities. The current review highlights the recent achievements in 2D-based bioelectronic systems for monitoring of biophysiological indicators and biosignals at neural interfaces

    Sintering of Ce3+-doped yttria nanoparticles prepared by precipitation method

    No full text
    Cerium doped yttrium oxide nanoparticles with various Ce3+ concentrations between 0.001 and 0.010 at% have been synthesised by precipitation method using ammonium hydroxide as a precipitation agent. The synthesised powders are characterised by a mean particle size of ca. 55 nm. Highly dense specimens, with a relative density> 98.8%, were obtained by sintering the green compacts shaped by pressure filtration, at 1550 °C for 3 h in air. The sintering behaviour of Ce3+ doped Y2O3 was studied by constructing Master Sintering Curves (MSC); the results showed that the apparent activation energy of sintering for Ce3+ doped Y2O3 increases with the increase of cerium concentration. The segregation of larger Ce3+ cations in the grain boundaries is likely to be responsible for the increase in the sintering activation energy
    corecore