3 research outputs found

    Use of cultivated plants and non-plant remedies for human and animal home-medication in Liuban district, Belarus

    Get PDF
    Background: To use any domestic remedy, specific knowledge and skills are required. Simple logic dictates that the use of wild plants in the context of limited interaction with nature requires prior identification, while in the case of non-plant remedies and cultivated plants this step can be omitted. This paper aims to document the current and past uses of non-plant remedies and cultivated plants in the study region for human/animal medication; to analyze the human medicinal and veterinary use areas in the context of the remedy groups; to qualitatively compare the results with relevant historical publications; and to compare the intensity and purpose of use between the remedy groups. Methods: During field studies 134 semi-structured interviews were conducted with locals from 11 villages in the LiubaÅ\u84 district of Belarus. Currently used home-remedies as well as those used in the past were documented by employing the folk history method. The subject was approached through health-related uses, not by way of remedies. Interview records were digitalized and structured in Detailed Use Records in order to ascertain local perceptions. An Informant Consensus Factor (FIC) was calculated for remedy groups as well as for different use categories. Results: In the human medication area the use of nearby remedies was neither very diverse nor numerous: 266 DUR for 45 taxa belonging to 27 families were recorded for cultivated plants along with 188 DUR for 58 different non-plant remedies. The FIC values for both remedy groups were lower than for wild plants. In the ethnoveterinary medicine use area there were 48 DUR referring to the use of 14 cultivated plant taxa from 12 families and 72 DUR referring to the use of 31 non-plant remedies. The FIC value for the whole veterinary use area of cultivated plants was relatively low, yet similar to the FIC of wild plants. Conclusions: Differences between remedy groups were pronounced, indicating that in domestic human medicine cultivated plants and non-plant remedies are either remarkably less important than wild ones or not considered worth talking about. In ethnoveterinary medicine non-plant remedies are almost equally important as wild plants, while cultivated plants are the least used. People in study area seem to still more often rely on, or are more willing to talk to strangers about, wild plants, as promoted by both official medicine and popular literature

    Multi-functionality of the few: Current and past uses of wild plants for food and healing in LiubaÅ\u84 region, Belarus

    Get PDF
    Background: This study examined the use of wild plants in the food, medicinal and veterinary areas within a small territory limited to one village council in the LiubaÅ\u84 district of Belarus. The objectives of the research were to document the current and past uses of wild plants in this region for food and human/animal medication; to analyse the food, medicinal and veterinary areas in the context of wild plants; and to qualitatively compare the results with relevant publications concerning the wild food plants of Belarus. Methods: Fieldwork was carried out as a practical part of a development cooperation project in May 2016 in 11 villages of the LiubaÅ\u84 district. One hundred thirty-four respondents were selected randomly. Information about local uses of wild plants was obtained via semi-structured interviews and the folk-history method. Interview records were digitalized and the data structured in Detailed Use Records (DUR), which were divided into food, medicinal and veterinary areas and then analysed to ascertain local perceptions. Results: A total of 2252 DUR of wild plants were recorded. Eighty-eight wild plant taxa belonging to 45 plant families were used across all three areas. Of these, 58 taxa were used in the food, 74 in the medicinal and 23 in the veterinary areas. A relatively high percentage of the taxa were used in both the food and medicinal areas (55%) and an even greater percentage in both the medicinal and veterinary areas (87%). Comparison with earlier research on wild food plants shows the considerable difference among seldom-mentioned taxa or uses, showing possible regional differences despite the homogenization of the population during the Soviet era. Conclusions: As the majority of taxa with overlapping uses belonged to the most utilized plants, there appears to be clear a tendency to use plants in several different areas once they are brought into the home. This may be due to the need to maximize the versatility of limited resources. While the number of wild taxa used is relatively high, the mean number of taxa used per person is quite low, which indicates the relatively minor importance of wild plants in the respective areas in the study region. The low importance of snacks signals that unintended contact with nature has been lost

    Engineering Degradation Rate of Polyphosphazene-Based Layer-by-Layer Polymer Coatings

    No full text
    Degradable layer-by-layer (LbL) polymeric coatings have distinct advantages over traditional biomedical coatings due to their precision of assembly, versatile inclusion of bioactive molecules, and conformality to the complex architectures of implantable devices. However, controlling the degradation rate while achieving biocompatibility has remained a challenge. This work employs polyphosphazenes as promising candidates for film assembly due to their inherent biocompatibility, tunability of chemical composition, and the buffering capability of degradation products. The degradation of pyrrolidone-functionalized polyphosphazenes was monitored in solution, complexes and LbL coatings (with tannic acid), providing the first to our knowledge comparison of solution-state degradation to solid-state LbL degradation. In all cases, the rate of degradation accelerated in acidic conditions. Importantly, the tunability of the degradation rate of polyphosphazene-based LbL films was achieved by varying film assembly conditions. Specifically, by slightly increasing the ionization of tannic acid (near neutral pH), we introduce electrostatic “defects” to the hydrogen-bonded pairs that accelerate film degradation. Finally, we show that replacing the pyrrolidone side group with a carboxylic acid moiety greatly reduces the degradation rate of the LbL coatings. In practical applications, these coatings have the versatility to serve as biocompatible platforms for various biomedical applications and controlled release systems
    corecore