7 research outputs found

    Using Remote Monitoring And Machine Learning To Classify Slam Events Of Wave Piercing Catamarans

    Get PDF
    An onboard monitoring system can measure features such as stress cycles counts and provide warnings due to slamming. Considering current technology trends there is the opportunity of incorporating machine learning methods into monitoring systems. A hull monitoring system has been developed and installed on a 111 m wave piercing catamaran (Hull 091) to remotely monitor the ship kinematics and hull structural responses. Parallel to that, an existing dataset of a similar vessel (Hull 061) was analysed using unsupervised and supervised learning models; these were found to be beneficial for the classification of bow entry events according to key kinematic parameters. A comparison of different algorithms including linear support vector machines, naïve Bayes and decision tree for the bow entry classification were conducted. In addition, using empirical probability distributions, the likelihood of wet-deck slamming was estimated given a vertical bow acceleration threshold of 1 in head seas, clustering the feature space with the approximate probabilities of 0.001, 0.030 and 0.25

    Influence of an active T-foil on motions and passenger comfort of a large high‑speed wave‑piercing catamaran based on sea trials

    Get PDF
    T-foil and stern tabs were installed on a wave-piercing catamaran (Incat Tasmania Hull 061) to improve ship motions and passenger comfort. More than 40 total effective hours of sea trials were conducted by the US Navy in 2004, encountering sea states 4-5 in the Atlantic Ocean near the United Kingdom. In this paper the influence of a ride-control system (RCS) on the heave and pitch response amplitude operator (RAO) of the full-scale high-speed catamaran was investigated using the sea trial data. The reduction in motion sickness incidence (MSI) was estimated in order to examine the effectiveness of the RCS in improving passenger comfort. With the existing control algorithm, the vertical accelerations were found to be best controlled by the active T-foil working together with the active stern tabs, while the pitch RAO was mainly mitigated by deploying only the stern tabs. About a 23% reduction was observed in the peak heave RAO with deployment of an active T-foil. The MSI can be reduced by up to 23% with respect to the cases with stern tabs only, depending on the encountered wave conditions, based on ISO recommendation for MSI calculation of a 2-h seaway passage

    Influence of an active T-foil on motions and passenger comfort of a wave-piercing catamaran based on sea trials in oblique seas

    Get PDF
    In this paper the influence of a Ride-Control System (RCS) on the Response Amplitude Operator (RAO) of a full-scale high-speed catamaran was investigated using sea trials data. A T-foil and stern tabs were installed on a Wave-Piercing Catamaran (Incat Tasmania Hull 061) to improve ship motions and passenger comfort. More than 40 total effective hours of sea trials were conducted by the US Navy in 2004, encountering sea states 4–5 in the Atlantic Ocean near the United Kingdom. The reduction in Motion Sickness Incidence (MSI) was estimated in order to examine the effectiveness of the RCS in improving passenger comfort. By comparing the case of active RCS (T-foil plus stern tabs) with the case of active stern tabs only, it was found that the T-foil plays a vital role in the passenger comfort enhancement. Based on ISO recommended MSI calculation of a 2-h seaway, the percentage reduction in MSI was estimated, and hence the effectiveness of the T-foil deployment, along with the influence of speeds, headings, location on board and encountered wave height were analysed. A notable improvement in passenger comfort was observed in the real world bow quartering sea by deploying the RCS. An MSI reduction of 21% in high speeds (30-35 knots, Fr ≈ 0.6) was observed, which was almost twice the MSI reduction (11%) in low speeds (15-20 knots, Fr ≈ 0.3). However, in terms of MSI percentage reduction, the ability of T-foil in vessel motion control in oblique seas was found to be limited compared to the results in head seas
    corecore