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SUMMARY  

An onboard monitoring system can measure features such as stress cycles counts and provide warnings due to slamming. 
Considering current technology trends there is the opportunity of incorporating machine learning methods into monitoring 
systems. A hull monitoring system has been developed and installed on a 111 m wave piercing catamaran (Hull 091) to 
remotely monitor the ship kinematics and hull structural responses. Parallel to that, an existing dataset of a similar vessel 
(Hull 061) was analysed using unsupervised and supervised learning models; these were found to be beneficial for the 
classification of bow entry events according to key kinematic parameters. A comparison of different algorithms including 
linear support vector machines, naïve Bayes and decision tree for the bow entry classification were conducted. In addition, 
using empirical probability distributions, the likelihood of wet-deck slamming was estimated given a vertical bow 
acceleration threshold of 1 𝑔𝑔 in head seas, clustering the feature space with the approximate probabilities of 0.001, 0.030 
and 0.25.

1.  INTRODUCTION 

Wet-deck slamming (wave impact against the cross-
deck structure) is an important consideration in the 
structural design of catamarans (Lavroff et al., 2013, 
Shabani et al., 2018a). The centre bow (shown in Figures 
1 and 2) minimises the risk of deck-diving and improves 
seakeeping characteristics but adds complexity and 
non-linearity in the hull-wave interaction during arch 
filling and wet-deck slamming (Lavroff and Davis, 
2015). Large transient slam loads may occur, generating 
whipping and structural vibrations (Thomas et al., 2011) 
and in the long term, these vibrations can contribute to 
fatigue (Amin et al., 2013).  

 

Figure 1: HSV-2 SWIFT, a 98-meter wave piercing 
catamaran built in 2003 (Hull 061) (Incat.com.au, 

2019). 

 

The severity of slam forces on high speed wave piercing 
catamarans (WPCs) has been reported to be in the order 
of the vessel weight but a high level of uncertainty still 
exists in determining these loads.  There have been 
numerical simulations of motions and loads of WPCs 
(McVicar et al., 2018) and model test programmes for 
measuring the extreme model scale loads with respect to 
various speeds and wave heights in both regular and 
irregular waves (Davis et al., 2017, Lavroff et al., 2017, 
AlaviMehr et al., 2019). Recent studies on motions and 

loads of WPCs have been based on hydroelastic 
segmented model tests mainly conducted in regular 
(Shabani et al., 2019b, c, d) and irregular (Davis et al., 
2017) head waves.  

 

 

Figure 2: Volcan De Tagoro, A 111- m wave piercing 
catamaran built in 2019 (Hull 091) (Incat.com.au, 

2019). 

 

 

 

Figure 3: The centre bow of a model wave piercing 
catamaran (Shabani et al., 2017). 
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Slam loads, pressures and kinematics of WPCs during 
bow entry events in regular head seas were investigated 
previously in (Shabani et al., 2017, Shabani et al., 2018a, 
Shabani et al., 2018b, Shabani et al., 2019a, Shabani et 
al., 2019b, c, d). In regular waves, it was seen that wet-
deck slamming occurs when the centre bow (see Figure 
3) immersion depth relative to undisturbed water surface 
reaches a certain limit which is a function of wave 
encounter frequency. This is shown in Figure 4 for two 
dimensionless wave encounter frequencies. In real 
operating conditions, a large set of data can lead to more 
accurate predictions of wet-deck slamming events. This 
is important from a structural design perspective 
considering that the existing prediction methods and 
design rules for WPCs are yet to be fully developed.  

 
(a) 

 
(b) 

Figure 4: Vertical displacement, encountered wave 
profile and centre bow (CB) load at slamming instants 
for a catamaran model in 𝒉𝒉𝒘𝒘 = 𝟗𝟗𝟗𝟗 mm ,𝑽𝑽𝐦𝐦 = 𝟐𝟐.𝟖𝟖𝟗𝟗 

m/s for two dimensionless wave encounter frequencies 
(𝝎𝝎𝒆𝒆

∗). ‘S’ shows intersection point of the static wet-deck 
level and instantaneous wet-deck line, 𝒉𝒉𝒘𝒘 is wave 

height and 𝑽𝑽𝐦𝐦  is the model velocity (Shabani et al., 
2018a). 

A hull monitoring system, which integrates strain 
gauges, accelerometers and other sensors, can provide 
valuable information for both ship design and 
operations. A monitoring system can have standard 
features specified in class guidelines such as stress 
cycles counts, warnings due to slamming and excessive 
motions. Considering the current technology trends and 
digitalisation affecting services, products and processes, 
smart and connected hull monitoring systems 
incorporating machine learning (ML) and deep learning 
methods are of interest (Bekker et al., 2018). 

When it comes to slamming, a hull monitoring system 
could be developed in order to satisfy multiple 

requirements in real-time. For example, it may have 
certain features to (1) predict ahead of time if the vessel 
is likely to be subjected to wave impacts given the 
current operating conditions (2) provide awareness of 
the likelihood and severity of slamming events that 
could hypothetically lead to either local or global 
structural damage (3) propose a modified speed or 
change of course to minimise the structural risks (4) 
automatically identify slamming events and provide a 
statistical summary of slamming occurrences and 
severity according to slam-induced accelerations and 
hull stresses. The first three features mentioned above 
represent some of the problems that were addressed by 
Ochi and Motter (Ochi and Motter, 1973) through a 
closed-form statistical model. More details of the Ochi 
slamming conditions and slamming probability can be 
found in (Dessi and Ciappi, 2013) and a review of 
slamming identification methods can be also found in 
(Magoga et al., 2017). Nevertheless, the alternative 
methods based on ML have yet to be developed to 
identify and classify slamming events in random waves. 

Various ML techniques (Aghabozorgi et al., 2015, Jain 
et al., 1999, Mahdavinejad et al., 2018, Witten et al., 
2016, Berkhin, 2006) have been developed to address a 
variety of classification problems. Among a broad range 
of applications, ML models for structural health 
monitoring, damage detection and predictive 
maintenance of mechanical systems, ships and offshore 
structures (Mitra and Gopalakrishnan, 2016) and digital 
twin of a research vessel (Bekker, 2018) can be 
highlighted. 

In this paper, the development of a remote monitoring 
system will be presented, and machine learning 
algorithms will be applied to classify centre bow entry 
events in random seas. This is part of a broader research 
project which aims to develop smart and connected hull 
monitoring systems specific to WPCs. 

2.  FULL-SCALE DATASETS  

2.1 HULL 091 MONITORING SYSTEM 

A hull monitoring system has been developed for 
Hull 091 Incat vessel (see Figure 2). The vessel was 
instrumented in July 2019 using a motion reference unit 
(MRU), a bow accelerometer and 10 strain gauges. An 
ultrasonic wave sensor was placed in the bow area to 
measure the incident wave profiles. An overview of the 
remote monitoring system is shown in Table 1. Figure 5 
shows the approximate longitudinal locations of the 
cDAQ, laptop, MRU, strain gauges, bow accelerometer 
and the ultrasonic sensor. The sampling rates were not 
consistent across the sensors because of the requirements 
of modules/sensors. More specifically, the sampling 
rates were set to 1000 Hz for strain gauge data, 100 Hz 
for the bow and MRU acceleration data, 50 Hz for MRU 
heave, pitch and roll data and 9 Hz for the ultrasonic 
sensor.  
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A LabVIEW program was developed to record and 
upload data automatically to a Google Drive account 
given a set of predefined rules and triggers. For instance, 
the LabVIEW program records full raw data as a 
technical data management streaming (TDMS) file and 
creates a subset file when the bow vertical acceleration 

is above 0.5g with a window of 30 seconds. In addition, 
the rain flow counting algorithm available in LabVIEW 
was included to output a comma-separated values (CSV) 
file, providing a summary of strain cycle counts from 
each strain gauge. 

 

Figure 5: Hull 091 cabling diagram from Frame 55 to frames (Fr) 38, 58, 73, 77, 83 and 85, showing the approximate 
longitudinal locations of the cDAQ, laptop, MRU, strain gauges, bow accelerometer and ultrasonic sensor listed in 

Table 1. 

Table 1 Overview of Hull 091 remote monitoring components 
Category  Item Quantity Description  

Sensors /data 
source 

Strain gauges  10 HBM 1-LY43-6/350 
Accelerometer (3-axial) 1 CrossBow- CXL04GP3 

Ultrasonic sensor 1 ToughSonic 50(TSPC-
21SRM-485) 

Motion reference unit (MRU) 1 SBG Systems- Ellipse2-A 
Global Positioning System (GPS) receiver 1 Hull 091 GPS distributor  

Data 
acquisition 

Data acquisition (DAQ) module  1 National Instrument (NI 
cDAQ-9174)  

Strain gauges module (8 channel) 2 National Instrument (NI-9236) 
Universal Input module (4 channel) 1 National Instrument (NI-9219) 

Computer, 
accessories 
and software 

Laptop  1 Dell latitude 7490 
USB Hub 1 Powered USB hub 

Onboard Monitoring Software  1 Customised LabVIEW 
program  

Remote Desktop Access 1 TeamViewer 

Laptop tray 1 RAM Universal tray (RAM-
234-3) 

Cabinet  1 PCLocs – Carrier 10 
 NMEA to USB convertor  1 Digital Yacht 

Storage & 
connectivity  

External hard drive 1 Samsung- USB-C 1T SSD 

Cloud based storage  100GB 
(scalable)  Google Drive 

WiFi/LAN router  1 Digital Yacht 4G Connect 
PRO 

4G antennas 2 Digital Yacht 4G Connect 
PRO 

Sim Card 1 Simyo 4G  
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 Figure 6: A sample streaming architecture, presenting data analytic & visualisation resources for a remote hull 
monitoring system (HMS) using Amazon Web Services (AWS) and MathWorks product

It is worth mentioning that developing a customised 
LabVIEW program enabled the integration of the MRU 
and GPS data. This was achieved by incorporating SBG 
Systems (Ellipse2-A) and NMEA-0183 GPS drivers, to 
the strain gauges, bow accelerometer and ultrasonic 
sensor data acquired from NI 9236 and 9219 modules. 
Furthermore, a file management function was included 
so that the files could be uploaded into the Google Drive 
and deleted from the computer hard drive. The choice of 
Google Drive here is due to having a general purpose, 
temporary storage for preliminary data access and some 
other user-friendly features such as automatic 
synchronisation and backup to manage large data files. 
Password and two-step verification mechanisms were 
enabled to protect data and enhance security of the 
remote access to the monitoring computer.       

The customised upload code developed in the LabVIEW 
program can be adjusted to upload the data into a cloud 
platform which enables advanced features such as 
machine learning, deep learning and near real-time 
monitoring. Such features, for example, are available in 
public cloud computing services such as Amazon Web 
Services (AWS) Google Cloud Platform (GCP), and 
Microsoft Azure.  

Figure 6 shows a typical streaming architecture, 
presenting data analytic and visualisation resources 
considered for the remote hull monitoring system. 
Through an Application Programming Interface (API), 
the solution architecture allows access to AWS data 
storage service (i.e. S3), sending information to AWS 
Lambda for serverless processing and using MATLAB 
on AWS for parallel computing. It also enables 
MATLAB users using different MATLAB runtimes to 
develop their algorithms on a local machine by 
incorporating some essential modules such as signal 

processing, machine learning and statistics or deep 
learning toolboxes but compile their codes to be 
deployed on MATLAB production server. The 
production server consists of several MATLAB workers 
running on remote computing instances on AWS and 
supports analytic integration to third-party software and 
webpages. The architecture incorporates Apache Kafka 
(i.e. a distributed streaming platform) for real time 
analytics. In addition, through web app designer and web 
app server, MATLAB applications can be designed and 
deployed to enable signal monitoring and customised 
analytics. At the time of writing this document, the data 
workflow benefits from AWS S3, and MATLAB on 
AWS for signal prepressing and filtering, standard 
calculations such as cumulative strain cycle counts on a 
monthly basis and reporting Motion Sickness Incidence 
(MSI) of voyages in each month. MSIs were calculated 
using rms weighted vertical accelerations for the 
location at which the MRU was placed. A Lambda 
function was also developed to highlight the highest 
peak bow acceleration of each month automatically on 
AWS (i.e. based on trigger events defined by new files 
received in S3 and without managing compute 
infrastructure). A customised MATLAB application was 
also developed to visualise the processed data. However, 
machine learning algorithms and near real-time analytics 
are yet to be investigated.   

Table 2 Main particulars of Hull 091 and Hull 061 
 Hull 091 Hull 061 
Length overall 111.9 m 97.22 m 
Length waterline  103.2 m 92 m 
Beam Overall  30.5 26.6 m 
Draught 4.1 m 3.434 m 
Demihull beam 5.8 m 4.5 m 
Max Deadweight 1000 tonnes 670 tonnes 
Speed  42.4 knots 38 knots 

HMS AWS S3 

AWS Lambda 
(Python 3.8) 

MATLAB 2020a 
on AWS 

MATLAB 
Production 
Server on 
AWS 

MATLAB Analytics 
(Signal processing, 
Statistics and Machine 
Learning, Deep learning, 
App designer, Compiler 
SDK …) 

 

 

Monitoring dashboard/ 
MATLAB Web App 
Server 

API 
Gateway 

Apache 
Kafka 

Kafka connector 
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Figure 7: General arrangement (GA) of Hull 061. 

 

Table 3 An overview of HSV-2 Swift (Hull 061) seakeeping and structural loads data obtained from sea trials between 
11th and 17th of May 2004 

Total Runs 
 

Sea State 
 

Significant 
Wave Height 

(m) 
 

Ship Speed 
(knots) 

 

Number of 
channels 

Sampling rate Total data 
rows 

 

159 4-5 1.8- 3.8 10-38 79 100 Hz 24 million  

Table 4 Selected runs in head seas for Hull 061 data series 

Run 
number 

Significant 
wave height 
(m) 

Modal 
period (s) 

Speed 
(knots) 

Ride 
control 
status 

Run 
duration 
(min.) 

70 2.4 8.2 20 ON 21.1 
92 3.0 11 30 ON 22.2 
99 2.0 7.5 35 OFF 19.4 
145 2.4 10.2 35 ON 19.5 
159 1.7 8.4 30 OFF 20.2 
174 2.9 10.2 35 ON 20.4 
180 2.8 9.7 35 OFF 20.3 
192 1.9 7.6 30 ON 19.7 
206 1.6 7.2 15 OFF 21.1 

The delivery voyage of Hull 091 from Hobart, Tasmania 
to Canary Islands, Spain took place between 15 July and 
15 August 2019 and over 200 GB data has been collected 
so far.  Hull 061 sea trials data was first used in order to 
develop a classification algorithm for the bow entry of 
high-speed WPCs. Table 2 compares main particulars of 
Hull 061 and Hull 091.  

 

2.2  DEVELOPMENT OF ML PIPELINE USING 
EXISTING HULL 061 DATA 

An existing dataset (Hull 061 dataset) was used to 
propose a possible architecture for an ML pipeline, in 
which ML workflows can be automated as described in 
Figure 6. The use of Hull 061 dataset was an important 
step given the fact that the two vessels are similar in 

design, noting that the main objective of the ML 
workflows in this work is to classify the bow entry 
events according to the kinematics of centre bow entry 
(Shabani et al., 2018a) in random waves. In addition, the 
successful instrumentation of Hull 061 and notable 
findings regarding slamming characteristics were the 
key for developing a remote monitoring system for Hull 
091. The choice of having an ML model developed for 
classifying bow entry events of Hull 091 in the present 
work is also linked to Hull 061 bow entry events which 
resulted in wet-deck slamming occurrences (Jacobi et 
al., 2012, Jacobi et al., 2014) in various speeds and wave 
heights during HSV-2 Swift sea trials.  

The seakeeping and structural loads trials of Hull 061 
were conducted in May 2004. The vessel was 
extensively instrumented by 47 strain gauges and 4 
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triaxial accelerometers located at the bow, bridge, LCG, 
and flight deck. The roll, pitch and yaw were measured 
at the longitudinal centre of gravity and a Tsurumi Seiki 
Co.  Ltd (TSK) wave height meter system was installed 
at Fr 72 (see Figure 7). Several parameters of the 
shipboard control systems were also monitored 
including the position of the T-foil and trim tabs, 
waterjet nozzle angle and waterjet shaft speed. Table 3 
shows an overview of Hull 061 seakeeping and 
structural loads data obtained from sea trials between 
11th and 17th of May 2004. The accumulated data rows 
from all runs were approximately 24 million rows, an 
equivalent of 66.6 hours of logged data at 100 Hz.  

The sea trials were conducted in various wave heights 
and different octagons, each with five legs from head 
seas to following seas at a constant ship speed 
throughout each octagon. Since head seas accounted for 
a larger number of slams in comparison to other 
headings (Jacobi et al., 2014), a total of 9 runs in head 
seas were selected for current analyses as listed in 
Table 4. 

3.  DATA ANALYSES APPROACH  

3.1 TIME SERIES SEGMENTATION & 
FEATURE EXTRACTION  

The rate of wet-deck slamming occurrence is a function 
of the centre bow and wet-deck geometry, speed, wave 
height and other operational factors (Jacobi et al., 2014), 
but the condition in which a wet-deck slam can occur is 
often simplified by considering the relative vertical bow 
displacements along the centre bow (Davis et al., 2017, 
Shabani et al., 2018a). The rate of wet-deck slamming 
occurrence therefore can be described by the number of 
bow entries exceeding a threshold value (Davis et al., 
2017) noting that the variability of the threshold relative 
vertical bow displacement can be included.  

A new approach is proposed in this work with the 
objective of having an automated data pipeline for 
describing bow entry events, in particular those that are 
likely associated with wet-deck slamming events. 
Figure 8 shows the overall approach proposed for 
classifying the bow entry events that incorporates 
unsupervised and supervised classification methods 
(Witten et al., 2016). 

As mentioned earlier, various methods for identification 
of slamming events have been proposed previously 
including whipping-based criterion (Dessi, 2014), 
maximum rate of change of stress (Jacobi et al., 2014, 
Magoga et al., 2017), and wavelet methods (Amin et al., 
2013). The approach proposed in Figure 8 considers bow 
vertical accelerations, strain gauge measurements and 
relative motions as the inputs for an unsupervised 
learning algorithm for the classification of the bow entry 
events.  The selected features have some similarities 
with those mentioned earlier with respect to slamming 
identification criteria.  The unsupervised model can be 
used for onboard or cloud-based analyses when other all 

inputs are available from the measurements. In addition, 
a supervised learning model is proposed which only 
requires the relative motions data to classify the bow 
entry events. The supervised model is then an alternate 
solution for simulations of wet-deck slamming analyses 
in random waves according to the bow entry kinematics.  

 

Figure 8: The process of centre bow entry 
classification. 

As shown in Figure 8, in the first step, the moving mean 
of the bow vertical acceleration was used to divide the 
time series into segments so that each segment 
represented a time window between the zero crossings 
of the moving mean signal (see Figure 9). Only segments 
with positive moving mean accelerations (see for 
example Figure 9 between 10.3 and 10.35 minutes) were 
selected for the analyses as they are linked to the centre 
bow entry events.  

In a parallel step, by parsing strain signals through the 
1-D continuous wavelet transform (CWT) function in 
MATLAB version 2019a (by The MathWorks, Inc.), the 
frequencies with the highest magnitudes were identified 
for each strain signal within each segment. The wavelet 
transform is obtained using the analytic Morse wavelet, 
with 𝐿𝐿1 normalisation, so equal amplitude oscillatory 
components in the data at different scales have equal 
magnitude in the CWT function.  

Figure 10 shows an example of the wavelet transform 
applied to a standardised strain signal, which is scaled to 
a zero mean and standard deviation of 1. The strain 
signal was low-pass filtered by a cutoff frequency of 5 
Hz before applying the wavelet transform. Frequencies 
with the highest magnitude are presented as a function 
of time, showing a peak frequency of 2.83 Hz which 
plateaued around a time of 14.72 minutes from the start 
of recording, noting that this was in a segment at which 
a wet-deck slamming occurred with a peak acceleration 
of above 2 𝑔𝑔.  
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Figure 9: A time record of vertical bow acceleration and its moving average, showing a typical peak acceleration above 
the mean, and two segments with positive and negative moving mean accelerations. Raw data is taken from Hull 061, 

Run 145 at a speed of 35 knots in head seas with a significant wave height of 2.4 m. 

(a) 

 

(b) 

 

Figure 10: 1-D wavelet transform’s frequency and magnitude of a standardised strain signal (contour plots), and 
frequencies with the highest magnitude as a function of time (line plots): (a) between 10.2 and 10.5 min., corresponding 

to peak accelerations shown in Figure 9; (b) between 14.6 and 14.8 min, corresponding to an impact with a peak 
acceleration of above 2g. Raw data is taken from strain gauge T1_10 at Fr 61 measured during Run 145 at a speed of 35 
knots in head seas with a significant wave height of 2.4 m. The wavelet transform is obtained using the analytic Morse 
wavelet.  The colour bar shows the magnitude of oscillatory components with 𝑳𝑳𝑳𝑳 normalisation in MATLAB 2019a. 
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Figure 11: Representation of (a) minimum relative bow displacement in bow entry segments (b) minimum relative bow 
velocity in bow entry segments. Raw data is taken from Hull 061, Run 145 at a speed of 35 knots in head seas with a 

significant wave height of 2.4 m. 

Table 5 Variables selected for the classification of the centre bow entry 

Variable 
Names 

Data category  Selected features  Presentation  Standardisation 

var1 Moving average of bow 
vertical acceleration  

Maximum value for each segment  Figure 9 Yes 

var2 Vertical bow acceleration 
above the moving average  

Peak value for each segment  Figure 9 Yes 

var3 Peak frequencies obtained 
from the wavelet analyses  

Maximum frequency value for each 
segment Figure 10 Yes 

var4 Peak magnitudes obtained 
from the wavelet analyses  

Maximum magnitude for each 
segment  Figure 10 Yes 

var5 Relative bow displacement  Minimum value for each segment  Figure 11 Yes 

var6 Relative bow velocity  Minimum value for each segment  Figure 11 Yes 
 

The centre bow entry in waves was analysed by 
considering the vertical displacement of the centre bow 
relative to the measured wave elevation in the bow area. 
Two parameters were selected to describe the centre bow 
entry in each segment: (1) relative bow displacement (2) 
relative bow velocity, as shown in Figure 11. The 
segment’s boundaries in the figure are zero crossing 
points found by the analyses of the moving average of 
the vertical bow acceleration as shown in Figure 9. Table 
5 shows a summary of features extracted for each 
segment. Features are either maximum or minimum 
values of quantities described in Figures 9-11.  

In the data preparation step before clustering, features 
were scaled to have a mean value of zero and a standard 
deviation of 1. The standardisation function is 𝑍𝑍 = 𝑥𝑥−𝑋𝑋�

𝑆𝑆
 , 

where 𝑥𝑥 is sample data, 𝑋𝑋� is the mean and 𝑆𝑆 is the 
standard deviation of the sample data. It is worth noting 
that the standardisation was conducted after the features 
listed in Table 5 were calculated from all runs listed in 

Table 4. The normalisation is required for the subsequent 
data clustering (described in the following section) so 
that the clustering is not biased towards any particular 
feature. 

3.2 DATA CLUSTERING AND SUPERVISED 
CLASSIFICATION  

Data clustering or unsupervised classification is a 
technique that does not require structured prior 
information about groups or classes in a given dataset 
[30]. The objective is to find natural groups (i.e. clusters) 
within the dataset based on a similarity measure such 
that each cluster represents a meaningful category 
according to a selection of variables or features extracted 
from the original dataset. Various algorithms have been 
developed for clustering including hierarchical 
clustering, partitioning and density-based partitioning 
algorithms [31]. For instance, in the k-means algorithm, 
which is one of the most widely used methods in 
partitioning, the objective is to find k clusters from n 
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observations so that each observation can be assigned to 
a cluster according to the minimum distance (e.g. 
Euclidian metric) from the mean value of each cluster 
(Aghabozorgi et al., 2015, Jain, 2010). While there are 
various forms of k-means, the main steps are (Jain, 2010, 
Jain and Dubes, 1988):  

Step1. Select an initial partition with k clusters; repeat 
steps 2 and 3 until cluster membership stabilises.  

Step 2. Generate a new partition by assigning each 
pattern to its closest cluster centre.  

Step 3. Compute new cluster centres 

In the steps above the number of clusters (k), distance 
metric and initialisation of clusters are user specified 
parameters. Use of the Euclidean distance as the distance 
metric is a typical choice; other metrics include 
Manhattan, Chebyshev and Minkowski metrics (Singh 
et al., 2013). The cluster initialization error can be also 
minimised through different approaches (Khan and 
Ahmad, 2004, Likas et al., 2003). It is worth noting that 
an extension of the basic k-means is the fuzzy c-means 
(Dunn, 1973, Bezdek, 1981), in which each observation 
can be assigned to multiple clusters. An in-depth review 
of the application of clustering techniques can be found 
in (Dunn, 1973, Bezdek, 1981), noting that the second 
paper is focused on time series clustering which is the 
case for the present study.  

The clustering analyses were conducted using the 
statistics and machine learning toolbox available in 
MATLAB version 2019a, in which a function has been 
developed that uses a k-means clustering method 
referred to as Lloyd’s algorithm (Lloyd, 1982), but the 
default setting of the function uses k-means++ (Arthur 
and Vassilvitskii, 2007). The k-means++ algorithm 
outperforms Lloyd’s algorithm in speed and accuracy by 
incorporating a different seeding technique that creates k 
clusters one by one according to a probability function, 
as opposed to an initial partitioning with k clusters in the 
first step. 

In supervised learning the objective is to train a classifier 
based on a set of labelled data or training examples. 
Various classifiers have been developed for this task 
including Bayesian classifiers, nearest neighbour 
classifiers, linear and polynomial classifiers, artificial 
neural networks and decision trees (Kubat, 2017). A 
review of classification techniques and algorithms with 
a focus on Internet of Things and sensory data analysis 
can be found in (Mahdavinejad et al., 2018). In this 
work, the classification learner application in MATLAB 
version 2019a was used to train classifiers based on 
relative motion features. 

4.  RESULTS  

4.1 CLASSIFICATION OF BOW ENTRY 
EVENTS USING UNSUPERVISED LEARNING 

The centre bow entry events were analysed from a total 
of approximately 3 hours of measurements on Hull 061 
accumulated from 9 runs in head seas with a significant 
wave height in the range between 1.6 m and 3.0 m, as 
presented in Table 4, in order to classify the events into 
3 groups with respect to 6 features listed in Table 5 
showing a set of features obtained from strain 
measurements, vertical bow acceleration and bow 
relative motion data. The clustering was achieved by 
using k-means++ algorithm, which was briefly 
introduced in the previous section. As mentioned earlier, 
the number of clusters (k) is a user specified parameter 
and the choice of k=3 here can be altered to a higher or 
lower number. Bow entry events with a minimum 
relative bow displacement of - 0.5 m at the reference 
frame of relative motion measurement (i.e. Fr72-Hull 
061) were selected. This resulted in a total of 2378 bow 
entry events, from which 58%, 31% and 11% were 
identified as “group 1”, “group 2” and “group 3”, 
respectively. The differences between the groups can be 
explained by box plot presentations of feature variables 
in each group as shown in Figures 12-14. The line inside 
each box is the median calculated for each distribution, 
while the upper and lower edges of each box present the 
25th and 75th percentiles, respectively. The most extreme 
data points shown by the upper and lower whiskers 
correspond approximately to ± 2.7𝜎𝜎 if the data were 
normally distributed, where 𝜎𝜎 is the standard deviation 
of the sample population. The data points outside these 
limits (i.e. 99.3% coverage) are considered as “outliers” 
and are shown by separate data points in each case. 

It can be inferred from Figure 12(b) that group 3 contains 
strong wet-deck slamming events given the distribution 
of the outliers in comparison to that in groups 1 and 2. In 
addition, the likelihood of wet-deck slamming events to 
be in groups 1 and 2 is much lower than that in group 3, 
supported by the frequency distributions presented in 
Figure 13 (a) in which groups 1 and 2 data are almost out 
of the range of expected whipping frequency (i.e. 2 -3 
Hz) for Hull 061. It should be noted that since filtering 
was not carried out on strain signals prior to the wavelet 
analyses, unlike group 3, group 1 and 2 data represent 
bow entry events where global loads are dominant rather 
than slam-induced whipping loads.  

For the above reasons, it can be argued that the 
kinematics conditions for wet-deck slamming 
occurrences in terms of bow relative displacement and 
velocity are best described by group 3 distributions 
plotted in Figure 14. However, it is difficult to draw a 
conclusion for conditions leading to wet-deck slamming 
occurrences based on the individual distribution of either 
minimum relative bow displacement or relative bow 
velocity. For example, the top whiskers in groups 2 and 
3 show little differences in Figure 14, indicating that 
group 2 bow entry events could be easily misclassified 
as group 3 or vice versa. This is an important 
consideration as minimum relative bow displacement is 
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often considered as the only parameter in the simulation 
of wet-deck slamming occurrences of WPCs in a seaway 
Such an approach can be, to a certain degree, misleading 
in terms of the rate of slamming occurrences if only one 
reference section is used. 

 

 

Figure 12: Box plot presentations of (top) maximum 
values of moving average of vertical bow acceleration 
during bow entry (var1) (bottom) maximum vertical 

bow acceleration above the moving mean (var2). 
Groups 1, 2 and 3 were determined by k-means ++ 
algorithm with input variables shown in Table 5. 

 

Fig13.a 

 

 

Fig13.b 

Figure 13: Box plot presentations of (a) frequency with 
maximum magnitude in the wavelet transform during 
bow entry (var3 in Table 5) and (b) wavelet transform 
maximum magnitude during bow entry (var4 in Table 
5), where raw data obtained from a strain gauge at Fr 

61. Groups 1, 2 and 3 were determined by k-means ++ 
algorithm with input variables shown in Table 5. 

 

 

 
Figure 14: Box plot presentations of (top) minimum 
relative bow displacement (var5 in Table 5) (bottom) 

minimum relative bow velocity (var6 in Table 5). 
Groups 1, 2 and 3 were determined by k-means ++ 
algorithm with input variables shown in Table 5. 
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Figure 15 The rate of bow entry per minute for various groups for each individual run (refer to Tabel 4). 

Figure 15 shows bow entry event rates for various runs 
at different speeds and significant wave heights. It can 
be seen that the bow entry event rates in group 2 can be 
several times higher than that in group 3. Interestingly, 
the results in Figure 15 show that in 30 and 20 knots the 
rates of group 3 bow entry events are higher than that in 
35 knots, but such events are eliminated at a speed of 15 
knots, highlighting the importance of effective speed 
reduction for decreasing the rate or minimising the 
likelihood of wet-deck slamming occurrences from 
operational perspective. 

4.2 CLASSIFICATION OF BOW ENTRY 
EVENTS USING SUPERVISED LEARNING  

Considering minimum relative bow displacement and 
velocity as a pair to classify bow entry events may lead 
to a better estimation of group 3 bow entry events in 
comparison to a single parameter criterion such as 
threshold relative vertical bow displacement. This is in 
fact a common approach for evaluating bottom 
slamming occurrences and the probability of such events 
in monohulls (Dessi and Ciappi, 2013). However, it 
should be noted that the conditions in which bottom 
entry events are classified for monohulls as either 
“slamming” or “no slamming” are usually defined by 
certain kinematics rules (Ochi and Motter, 1973) rather 
than by a data driven approach taken in the present work.  

One approach for the classification of centre bow entry 
events could be to calculate distances from the centroid 
of each group shown in Figure 16 to determine the type 
of bow entry events. More broadly, supervised learning 
classification algorithms such as support vector 
machines (SVMs), naïve Bayes or decision trees can be 
applied. The full explanation of supervised learning 

models and their applications for the classification of the 
bow entry events is beyond the scope of the present work 
but it is of interest to show how these models would 
generalise the bow entry classification problem by 
considering bow entry groups, shown in Figure 16, as 
training examples. An overview of possible outcomes 
from these models is presented in Figure 17. Table 6 
shows the confusion matrix and the accuracy of these 
models with MATLAB’s default settings (version 
2019a) for each algorithm.  

 

Figure 16 Minimum relative bow displacement versus 
minimum relative bow velocity during bow entry 

events in groups 1, 2 and 3. 

Each algorithm resulted in a different pattern although 
the data used for training were identical. Figure 17(c) 
shows the result of a coarse decision tree which indicates 
a minimum relative displacement and velocity of about 
-2.6 m and -3 m/s for group 3 bow entry events, where 
the former value is comparable to the wet-deck clearance 
of Hull 061 in calm water and the latter is about 15% of 
a full speed of 38 knots. In contrast, at a relative 
displacement of -2.6 m, the two other models (i.e. linear 
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SVM and Gaussian naïve Bayes) shown in 
Figure 17 (a & b), suggest a relative bow velocity of 
- 5.3 m/s although these models describe the bow entry 
events quite differently in other regions.  

 

 

 

  

(a) Unclassified domain (c) Classification based on a coarse decision tree 

  

(b) Classification based on a linear support vector 
machine (SVM) model 

(d) Classification based on a Gaussian naïve Bayes 
model 

 

Figure 17 An overview of bow entry classification using three supervised learning models by incorporating data shown 
in Figure 16 as training examples. 

 

 

Table 6 Confusion matrix and accuracy of trained models 

 Model 1 Model 2 Model 3 
Confusion 
matrix 
(observations) 

 
  

Accuracy  84.9 % 77.7% 83.9% 
 

1 2 3

Predicted class

1

2

3

Tr
ue

 c
la

ss

Model : Linear SVM

1292

83

14

80

615

139

42

113

1 2 3

Predicted class

1

2

3

Tr
ue

 c
la

ss

Model :Coarse Tree

1327

250

29

45

397

113

93

124

1 2 3

Predicted class

1

2

3

Tr
ue

 c
la

ss

Model: Gaussian Naive Bayes

1307

113

16

62

573

134

3

54

116



Trans RINA, Vol XXX, Part X, Intl J Maritime Eng, X-X 2020  

 

©2020: The Royal Institution of Naval Architects 

 

 

 
(a) Model 1 groups: linear support vector 

machine (SVM) 

 
(b) Model 2 groups: coarse decision tree 

 
(c) Model3 groups: Gaussian Naive Bayes 

model 

Figure 18 Box plot presentations of maximum vertical 
bow acceleration above the moving mean (var2) based 
on the outputs of three different classifiers trained by 

incorporating data shown in Figure 16 as training 
examples and general patterns described in Figure 17. 

Moreover, the number of strong wet-deck slamming 
events in each group was found to be very different to 
that seen in the original groups used for training. This is 
shown in Figure 18 which shows the maximum bow 
vertical acceleration above the moving mean, or feature 
defined as var2, for each group for the three classifiers. 
As can be seen in Figure 18 (a-c), there are many outliers 
suggesting wet-deck slamming events in groups 1 and 2 

as opposed to that seen in Figure 12 (b). Thus, it is 
difficult to judge whether wet-deck slamming events are 
best described by these classifiers without prior 
knowledge about the distribution of wet-deck slamming 
events in each group. Therefore, a probabilistic 
description of wet-deck slamming events is required.  

 

4.3 PROBABILITY OF SLAMMING  

The probability of wet-deck slamming 𝑃𝑃(slam) can be 
estimated as: 

𝑃𝑃(slam) =
𝑁𝑁𝑠𝑠
𝑁𝑁𝑏𝑏𝑏𝑏 

=
∑  𝑁𝑁𝑆𝑆,𝑖𝑖 
𝑘𝑘
𝑖𝑖=1

∑ 𝑁𝑁𝑏𝑏𝑏𝑏 ,𝑖𝑖
𝑘𝑘
𝑖𝑖=1

=
∑ 𝑃𝑃𝑖𝑖 .𝑁𝑁𝑏𝑏𝑏𝑏,𝑖𝑖
𝑘𝑘
𝑖𝑖=1

∑ 𝑁𝑁𝑏𝑏𝑏𝑏 ,𝑖𝑖
𝑘𝑘
𝑖𝑖=1

 

(1) 

where, 𝑁𝑁𝑠𝑠 is the total number of wet-deck slams, 𝑁𝑁𝑏𝑏𝑏𝑏 is 
the total number of bow entry events, 𝑁𝑁𝑆𝑆,𝑖𝑖 is the number 
of wet-deck slams in cluster i, 𝑁𝑁𝑏𝑏𝑏𝑏 ,𝑖𝑖 is the number of bow 
entry events in cluster i, and 𝑃𝑃𝑖𝑖 is wet-deck slamming 
probability of cluster i.  

The number of bow entries for each cluster, 𝑁𝑁𝑏𝑏𝑏𝑏,𝑖𝑖, in a 
seaway is a parameter that can be obtained through an 
ML model by considering a set of known features. What 
is difficult to estimate is the probability of wet-deck 
slamming for each cluster (𝑃𝑃𝑖𝑖). The ideal situation is to 
find clusters in which 𝑃𝑃𝑖𝑖 is the element of an ideal set, 
for example, clusters with 𝑃𝑃𝑖𝑖 ∈ {1, 0}. This could be the 
case to a certain degree if the bow vertical acceleration 
and the wavelet features were used in an ML model such 
as the unsupervised model discussed in Section 4.1. As 
mentioned, such model is useful for automated data 
analyses for a monitoring system as described in 
Figure 7.  

For simulation purposes, relative motions are considered 
as features to determine the rate of wet-deck slamming 
occurrences, in which 𝑃𝑃𝑖𝑖 should be estimated for each 
cluster.  

It is worth noting that, in the case of bottom slamming 
of monohulls, the assumption is that relative 
displacement and velocity are two features that describe 
“slamming” and “non-slamming” zones (Dessi, 2014, 
Dessi and Ciappi, 2013, Ochi and Motter, 1973), which 
means there exist two clusters with 𝑃𝑃1 ≅ 1 for slamming 
events and 𝑃𝑃2 ≅ 0 for non-slamming events. However, 
this was not the case in Figure 18 (a-c) and a broader 
approach should be developed.  

One approach to estimate 𝑷𝑷𝒊𝒊 for clusters could be based 
on empirical cumulative distribution probability of a 
third-party feature which can describe the severity of 



Trans RINA, Vol XXX, Part X, Intl J Maritime Eng, X-X 2020  

 

©2020: The Royal Institution of Naval Architects 

 

slamming, such as maximum vertical bow acceleration 
during the bow entry or maximum vertical bow 
acceleration above the moving mean. Figure 19 shows 
cumulative probability plots of maximum vertical bow 
acceleration above the moving mean in three different 
groups obtained from the linear SVM classification 
model, which compares the cumulative probability at an 
arbitrary reference value of 0.5 𝒈𝒈. The cumulative 
probability of bow entry with a figure above this can be 
calculated as an estimate for 𝑷𝑷𝒊𝒊 for each cluster, which 
are approximately, 0.01, 0.13 and 0.53 for groups 1, 2 
and 3 respectively. Table 7 shows the estimations of 𝑷𝑷𝒊𝒊 
for each cluster for the three models trained.  

 
Figure 19 cumulative probability plots of max vertical 

bow acceleration above the moving mean in three 
different groups obtained from Model 1 classification 

algorithm (linear support vector machine (SVM)). 

As can be seen in Table 7, wet-deck slamming events are 
less likely to occur in groups 1 and 2 compared to 

group 3 for each model. Although the choice of model 
does affect the probability of slamming for each group 
(i.e. 𝑷𝑷𝒊𝒊 ), the number of bow entries in each group (i.e. 
𝑵𝑵𝒃𝒃𝒆𝒆 ,𝒊𝒊 ) predicted by each model will change 
proportionally, and therefore ∑ 𝑷𝑷𝒊𝒊.𝑵𝑵𝒃𝒃𝒆𝒆,𝒊𝒊

𝒌𝒌
𝒊𝒊=𝑳𝑳  is expected 

to be similar. Consequently, given a certain threshold 
(e.g. 0.5 𝒈𝒈 or 1 𝒈𝒈) the choice of clustering should not 
significantly change the probability of slamming 

𝑷𝑷(𝐬𝐬𝐬𝐬𝐬𝐬𝐦𝐦), which is equivalent to ∑ 𝑷𝑷𝒊𝒊.𝑵𝑵𝒃𝒃𝒆𝒆,𝒊𝒊
𝒌𝒌
𝒊𝒊=𝑳𝑳
∑ 𝑵𝑵𝒃𝒃𝒆𝒆 ,𝒊𝒊
𝒌𝒌
𝒊𝒊=𝑳𝑳

 as defined in 

Equation 1.  

It is worth noting that the number and type of clusters 
can be important for optimal decision making, for 
instance to decide how often and to what degree the ship 
speed is required to be reduced in order to lower the 
probability of experiencing slamming events above a 
certain threshold in terms of slam-induced acceleration. 
However, recommending an optimal ship speed requires 
a much more complex matrix as other operational factors 
will come into effect.  

The applicability of the presented method for monohull 
slamming has not been investigated and is thus a 
limitation of this work.  Whether data driven methods for 
peak vertical acceleration distributions (Begovic et al., 
2016, Razola et al., 2016, VanDerwerken and Judge, 
2017) could be combined with appropriate ML models 
for improved slamming analyses is yet to be considered.     

 

 

Table 7 Empirical estimators of wet deck slamming probability (above given thresholds) in each group for different 
trained models with two thresholds of 0.5 𝒈𝒈 and 1 𝒈𝒈 for Hull 061 in head seas. 

  Group 1 Group 2  Group 3 Group 1 Group 2  Group 3 

threshold  0.5 𝑔𝑔 1 𝑔𝑔 

Model1 0.013 0.130 0.530 0.001 0.032 0.250 

Model2 0.016 0.150 0.440 0.002 0.052 0.190 

Model3  0.013 0.140 0.490 0.001 0.037 0.220 

        

 

5.  CONCLUSIONS 

A remote hull monitoring system was developed for a 
111 m catamaran with the objective of connectivity to a 
cloud-based platform in which machine learning/deep 
learning models could be deployed, enabling near real 
time analyses, classification and visualisation of data. 
The monitoring system is capable of measuring strain 
across multiple locations, bow and passenger deck 
accelerations, motions (i.e. heave, pitch and roll) and 
motions at the bow area relative to the water surface. 

Using sea trials data available from a similar vessel (Hull 
061) and with the consideration of both unsupervised 
and supervised learning algorithms, centre bow entry 
events were classified into different groups and the 
likelihood of wet-deck slamming in head seas was 
estimated in each group for slamming events above two 
slam-induced bow acceleration thresholds of 0.5 𝒈𝒈 and 
1 𝒈𝒈. By collecting a large amount of data of bow entry 
and wet-deck slamming events in various operational 
conditions, the models and estimates could be improved, 
and the probability of wet-deck slamming events in each 
cluster can be better evaluated. The ML approach 
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proposed in this paper can be used for clustering and 
grouping bow entry events. This also provides a basis for 
slamming probability analyses in each group/cluster for 
real-time operations. For instance, the effect of speed 
changes on relative motions and slamming probability in 
any sea state could be monitored and displayed, provided 
that the vessel is equipped with the appropriate sensors. 
Loads and motions information could be also used for 
future design analyses investigating the influence of wet-
deck slamming.    

More investigations are recommended to explore the 
application of learning models and recommendation 
systems for slamming, seakeeping, passenger comfort 
and the development of smart and connected hull 
monitoring systems such as on Incat Hull 093 and future 
WPC vessels to help with the improvement of high-
speed vessels and the understanding of structural loads 
and sea keeping performance.  

6.  ACKNOWLEDGEMENTS  

This work was undertaken in collaboration between the 
University of Tasmania, Revolution Design, Incat 
Tasmania, University of New South Wales Sydney, 
Italian National Research Council and University 
College London through the support of the Australian 
Research Council Linkage Grant number LP170100555. 
The work of Mr. Pete Woodward in the development of 
the hull monitoring system is also gratefully 
acknowledged.  

7.  REFERENCES   

 
 

1 AGHABOZORGI, S., SHIRKHORSHIDI, A. 
S. & WAH, T. Y. 2015. Time-series clustering–
a decade review. Information Systems, 53, 16-
38. 

2 ALAVIMEHR, J., LAVROFF, J., DAVIS, M. 
R., HOLLOWAY, D. S. & THOMAS, G. A. 
2019. An experimental investigation on 
slamming kinematics, impulse and energy 
transfer for high-speed catamarans equipped 
with ride control systems. Ocean Engineering, 
178, 410-422. 

3 AMIN, W., DAVIS, M., THOMAS, G. & 
HOLLOWAY, D. 2013. Analysis of wave slam 
induced hull vibrations using continuous 
wavelet transforms. Ocean Engineering, 58, 
154-166. 

4 ARTHUR, D. & VASSILVITSKII, S. K-
means++: The advantages of careful seeding.  
Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, 
2007. Society for Industrial and Applied 
Mathematics, 1027-1035. 

5 BEGOVIC, E., BERTORELLO, C., 
PENNINO, S., PISCOPO, V. & 
SCAMARDELLA, A. 2016. Statistical 

analysis of planing hull motions and 
accelerations in irregular head sea. Ocean 
Engineering, 112, 253-264. 

6 BEKKER, A. Exploring the blue skies potential 
of digital twin technology for a polar supply 
and research vessel.  Proceedings of the 13th 
International Marine Design Conference 
Marine Design XIII (IMDC 2018), 2018. 135-
146. 

7 BERKHIN, P. 2006. A survey of clustering 
data mining techniques. Grouping 
multidimensional data. Springer, Berlin, 
Heidelberg. 

8 BEZDEK, J. C. 1981. Pattern recognition with 
fuzzy objective function algorithms, New York, 
NY, US, Plenum Press. 

9 DAVIS, M., FRENCH, B. & THOMAS, G. 
2017. Wave slam on wave piercing catamarans 
in random head seas. Ocean Engineering, 135, 
84-97. 

10 DESSI, D. 2014. Whipping-based criterion for 
the identification of slamming events. 
International Journal of Naval Architecture and 
Ocean Engineering, 6, 1082-1095. 

11 DESSI, D. & CIAPPI, E. 2013. Slamming 
clustering on fast ships: From impact dynamics 
to global response analysis. Ocean 
Engineering, 62, 110-122. 

12 DUNN, J. C. 1973. A fuzzy relative of the 
isodata process and its use in detecting 
compact well-separated clusters. J. 
Cybernetics 3, 32– 57. 

13 JACOBI, G., THOMAS, G., DAVIS, M., 
HOLLOWAY, D., DAVIDSON, G. & 
ROBERTS, T. 2012. Full-scale motions of a 
large high-speed catamaran: The influence of 
wave environment, speed and ride control 
system. International Journal of Maritime 
Engineering, 154, A143-A155. 

14 JACOBI, G., THOMAS, G., DAVIS, M. R. & 
DAVIDSON, G. 2014. An insight into the 
slamming behaviour of large high-speed 
catamarans through full-scale measurements. 
Journal of Marine Science and Technology, 19, 
15-32. 

15 JAIN, A. K. 2010. Data clustering: 50 years 
beyond k-means. Pattern recognition letters, 31, 
651-666. 

16 JAIN, A. K. & DUBES, R. C. 1988. Algorithms 
for clustering data, Upper Saddle River, NJ, 
US, Prentice-Hall, Inc. 

17 JAIN, A. K., MURTY, M. N. & FLYNN, P. J. 
1999. Data clustering: A review. ACM 
computing surveys (CSUR), 31, 264-323. 

18 KHAN, S. S. & AHMAD, A. 2004. Cluster 
center initialization algorithm for k-means 
clustering. Pattern recognition letters, 25, 
1293-1302. 

19 KUBAT, M. 2017. An introduction to machine 
learning, New York, NY, US, Springer-Verlag. 



Trans RINA, Vol XXX, Part X, Intl J Maritime Eng, X-X 2020  

 

©2020: The Royal Institution of Naval Architects 

 

20 LAVROFF, J. & DAVIS, M. R. 2015. 
Slamming kinematics, impulse and energy 
transfer for wave-piercing catamarans. Journal 
of Ship Research, 59, 145-161. 

21 LAVROFF, J., DAVIS, M. R., HOLLOWAY, 
D. S. & THOMAS, G. 2013. Wave slamming 
loads on wave-piercer catamarans operating at 
high-speed determined by hydro-elastic 
segmented model experiments. Marine 
structures, 33, 120-142. 

22 LAVROFF, J., DAVIS, M. R., HOLLOWAY, 
D. S., THOMAS, G. A. & MCVICAR, J. J. 
2017. Wave impact loads on wave-piercing 
catamarans. Ocean Engineering, 131, 263-271. 

23 LIKAS, A., VLASSIS, N. & VERBEEK, J. J. 
2003. The global k-means clustering algorithm. 
Pattern recognition, 36, 451-461. 

24 LLOYD, S. 1982. Least squares quantization 
in pcm. IEEE transactions on information 
theory, 28, 129-137. 

25 MAGOGA, T., AKSUS, S., CANNON, S., 
OJEDA, R. & THOMAS, G. 2017. 
Identification of slam events experienced by a 
high-speed craft. Ocean Engineering, 140, 309-
321. 

26 MAHDAVINEJAD, M. S., REZVAN, M., 
BAREKATAIN, M., ADIBI, P., BARNAGHI, 
P. & SHETH, A. P. 2018. Machine learning for 
internet of things data analysis: A survey. 
Digital Communications and Networks, 4, 161-
175. 

27 MCVICAR, J., LAVROFF, J., DAVIS, M. R. 
& THOMAS, G. 2018. Fluid–structure 
interaction simulation of slam-induced bending 
in large high-speed wave-piercing catamarans. 
Journal of Fluids and Structures, 82, 35-58. 

28 MITRA, M. & GOPALAKRISHNAN, S. 
2016. Guided wave based structural health 
monitoring: A review. Smart Materials and 
Structures, 25, 053001. 

29 OCHI, M. K. & MOTTER, L. E. 1973. 
Prediction of slamming characteristics and hull 
responses for ship design. Trans. SNAME, 81, 
144–176. 

30 RAZOLA, M., OLAUSSON, K., GARME, K. 
& ROSÉN, A. 2016. On high-speed craft 
acceleration statistics. Ocean Engineering, 
114, 115-133. 

31 SHABANI, B., HOLLOWAY, D., LAVROFF, 
J., DAVIS, M. & THOMAS, G. Systematic 
model tests on centre bow design for motion 
and slamming load alleviation in high speed 
catamarans.  14th international conference on 
fast sea transportation, 2017 Nantes, France. 
136-143. 

32 SHABANI, B., LAVROFF, J., DAVIS, M. R., 
HOLLOWAY, D. S. & THOMAS, G. A. 
2018a. Slam loads and kinematics of wave-
piercing catamarans during bow entry events 

in head seas. Journal of Ship Research, 62, 134-
155. 

33 SHABANI, B., LAVROFF, J., DAVIS, M. R., 
HOLLOWAY, D. S. & THOMAS, G. A. 
2019a. Slam loads and pressures acting on 
high-speed wave-piercing catamarans in 
regular waves. Marine Structures, 66, 136-153. 

34 SHABANI, B., LAVROFF, J., HOLLOWAY, 
D. S., DAVIS, M. R. & THOMAS, G. A. 
2018b. The effect of centre bow and wet-deck 
geometry on wet-deck slamming loads and 
vertical bending moments of wave-piercing 
catamarans. Ocean Engineering, 169, 401-417. 

35 SHABANI, B., LAVROFF, J., HOLLOWAY, 
D. S., DAVIS, M. R. & THOMAS, G. A. 
2019b. Centre bow and wet-deck design for 
motion and load reductions in wave piercing 
catamarans at medium speed. Ships and 
Offshore Structures, 1-17. 

36 SHABANI, B., LAVROFF, J., HOLLOWAY, 
D. S., DAVIS, M. R. & THOMAS, G. A. 
2019c. The influence of the centre bow and wet-
deck geometry on motions of wave-piercing 
catamarans. Proceedings of the Institution of 
Mechanical Engineers, Part M: Journal of 
Engineering for the Maritime Environment, 
233, 474-487. 

37 SHABANI, B., LAVROFF, J., HOLLOWAY, 
D. S., DAVIS, M. R. & THOMAS, G. A. 
2019d. Wet-deck slamming loads and pressures 
acting on wave piercing catamarans. 
International Shipbuilding Progress, 66, 201-
231. 

38 SINGH, A., YADAV, A. & RANA, A. 2013. 
K-means with three different distance metrics. 
International Journal of Computer 
Applications, 67. 

39 THOMAS, G., WINKLER, S., DAVIS, M., 
HOLLOWAY, D., MATSUBARA, S., 
LAVROFF, J. & FRENCH, B. 2011. Slam 
events of high-speed catamarans in irregular 
waves. Journal of Marine Science and 
Technology, 16, 8-21. 

40 VANDERWERKEN, D. & JUDGE, C. 2017. 
Statistical analysis of vertical accelerations of 
planing craft: Common pitfalls and how to 
avoid them. Ocean Engineering, 139, 265-274. 

41 WITTEN, I. H., FRANK, E., HALL, M. A. & 
PAL, C. J. 2016. Data mining: Practical 
machine learning tools and techniques, 
Cambridge, MA, US, Morgan Kaufmann. 

 

 


