32,754 research outputs found

    Majorana Neutrinos and Same-Sign Dilepton Production at LHC and in Rare Meson Decays

    Get PDF
    We discuss same-sign dilepton production mediated by Majorana neutrinos in high-energy proton-proton collisions pp\ra \ell^+ \ell^{\prime +}X for , =e, μ, τ\ell,~ \ell^\prime = e,~ \mu,~ \tau at the LHC energy s=14\sqrt{s}=14 TeV, and in the rare decays of KK, DD, DsD_s, and BB mesons of the type M^{+}\ra M^{\prime -}\ell ^{+}\ell ^{\prime+}. For the pppp reaction, assuming one heavy Majorana neutrino of mass mNm_N, we present discovery limits in the (mN,UNUN)(m_{N},|U_{\ell N}U_{\ell^\prime N}|) plane where UNU_{\ell N} are the mixing parameters. Taking into account the present limits from low energy experiments, we show that at LHC for the nominal luminosity L=100 fb1^{-1} there is no room for observable same-sign dilepton signals. However, increasing the integrated luminosity by a factor 30, one will have sensitivity to heavy Majorana neutrinos up to a mass mN1.5m_N\leq 1.5 TeV only in the dilepton channels μμ\mu\mu and μτ\mu \tau, but other dilepton states will not be detectable due to the already existing strong constraints. We work out a large number of rare meson decays, both for the light and heavy Majorana neutrino scenarios, and argue that the present experimental bounds on the branching ratios are too weak to set reasonable limits on the effective Majorana masses.Comment: 18 pages, 4 figures (requires graphicx), a coefficient in Eq. (4) corrected leading to drastic reduction in the Majorana-induced same-sign dilepton cross-section at LHC; revised Figs. 2 and 3; references adde

    O(αs)O(\alpha_s) Corrections to BXse+eB \to X_s e^+ e^- Decay in the 2HDM

    Full text link
    O(αs)O(\alpha_s) QCD corrections to the inclusive BXse+eB \to X_s e^+ e^- decay are investigated within the two - Higgs doublet extension of the standard model (2HDM). The analysis is performed in the so - called off-resonance region; the dependence of the obtained results on the choice of the renormalization scale is examined in details. It is shown that O(αs)O(\alpha_s) corrections can suppress the BXse+eB \to X_s e^+ e^- decay width up to 1.5÷31.5 \div 3 times (depending on the choice of the dilepton invariant mass ss and the low - energy scale μ\mu). As a result, in the experimentally allowed range of the parameters space, the relations between the BXse+eB \to X_s e^+ e^- branching ratio and the new physics parameters are strongly affected. It is found also that though the renormalization scale dependence of the BXse+eB \to X_s e^+ e^- branching is significantly reduced, higher order effects in the perturbation theory can still be nonnegligible.Comment: 16 pages, latex, including 6 figures and 3 table

    Rare BB-Decays and Heavy to Light Semileptonic Transitions in the Isgur and Wise Limit

    Get PDF
    From the experimental branching ratios for B>ρ0lνˉlB^- --> \rho^0 l^-\bar\nu_l and D^+ --> {\overl K}^{*0}({\overl K}^0) e^+ \nu_e one finds, in the Heavy Quark Limit of HQETHQET, Vbu=(8.1±1.7)x103 |V_{bu}|=(8.1\pm 1.7) x 10^{-3}, larger but consistent with the actual quoted range (27)x103(2 - 7) x 10^{-3}. In the same framework one predicts for R(B>Kγ)=(2±2)102R(B --> K^*\gamma)=( 2 \pm 2 ) 10^{-2}.Comment: 9 pages, 1 Figure avalaible on request from [email protected]
    corecore