3 research outputs found

    Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins

    No full text
    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No <i>sigma</i> vectors need to be stored in memory for the FCIQMC eigensolvera substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg­(II) porphyrin, and Fe­(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size

    Full Configuration Interaction Excitations of Ethene and Butadiene: Resolution of an Ancient Question

    No full text
    We employ the recently developed full configuration interaction quantum Monte Carlo (FCIQMC) method to compute the π → π* vertical excitation energies of ethene and all-<i>trans</i> butadiene. These excitations have been the subject of extensive theoretical studies, and their location with respect to the corresponding absorption band maximum is the source of a long lingering debate. Here, we reliably estimate the vertical excitations of ethene and butadiene by performing FCIQMC calculations for spaces as large as 10<sup>18</sup> and 10<sup>29</sup> Slater determinants, respectively. For ethene, we obtain a vertical excitation energy in the range 7.89–7.96 eV, depending on the particular equilibrium ground-state geometry employed, and definitely higher than the absorption maximum located at 7.66 eV. For the computationally more challenging case of butadiene, our calculations provide a robust estimate of about 6.3 eV for this excitation, that is, 0.4 eV higher than the corresponding absorption band maximum. Our FCIQMC excitation energies represent a reliable benchmarking reference for future calculations

    OpenMolcas: From source code to insight

    No full text
    In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with post calculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory and new electronic and muonic basis sets
    corecore