30,253 research outputs found

    The Diamine Cation Is Not a Chemical Example Where Density Functional Theory Fails

    Get PDF
    In a recent communication, Weber and co-workers presented a surprising study on charge-localization effects in the N,N'-dimethylpiperazine (DMP+) diamine cation to provide a stringent test of density functional theory (DFT) methods. Within their study, the authors examined various DFT methods and concluded that "all DFT functionals commonly used today, including hybrid functionals with exact exchange, fail to predict a stable charge-localized state." This surprising conclusion is based on the authors' use of a self-interaction correction (namely, complex-valued Perdew-Zunger Self-Interaction Correction (PZ-SIC)) to DFT, which appears to give excellent agreement with experiment and other wavefunction-based benchmarks. Since the publication of this recent communication, the same DMP+ molecule has been cited in numerous subsequent studies as a prototypical example of the importance of self-interaction corrections for accurately calculating other chemical systems. In this correspondence, we have carried out new high-level CCSD(T) analyses on the DMP+ cation to show that DFT actually performs quite well for this system (in contrast to their conclusion that all DFT functionals fail), whereas the PZ-SIC approach used by Weber et al. is the outlier that is inconsistent with the high-level CCSD(T) (coupled-cluster with single and double excitations and perturbative triples) calculations. Our new findings and analysis for this system are briefly discussed in this correspondence.Comment: Accepted by Nature Communication

    Perturbative Analysis of Spectral Singularities and Their Optical Realizations

    Full text link
    We develop a perturbative method of computing spectral singularities of a Schreodinger operator defined by a general complex potential that vanishes outside a closed interval. These can be realized as zero-width resonances in optical gain media and correspond to a lasing effect that occurs at the threshold gain. Their time-reversed copies yield coherent perfect absorption of light that is also known as an antilaser. We use our general results to establish the exactness of the n-th order perturbation theory for an arbitrary complex potential consisting of n delta-functions, obtain an exact expression for the transfer matrix of these potentials, and examine spectral singularities of complex barrier potentials of arbitrary shape. In the context of optical spectral singularities, these correspond to inhomogeneous gain media.Comment: 13 pages, 2 figures, one table, a reference added, typos correcte

    General Lower Bounds for b -> d Penguin Processes

    Full text link
    For the exploration of flavour physics, b -> d penguin processes are an important aspect, with the prominent example of \bar B^0_d -> K^0 \bar K^0. We recently derived lower bounds for the CP-averaged branching ratio of this channel in the Standard Model; they were found to be very close to the corresponding experimental upper limits, thereby suggesting that \bar B^0_d -> K^0 \bar K^0 should soon be observed. In fact, the BaBar collaboration subsequently announced the first signals of this transition. Here we point out that it is also possible to derive lower bounds for \bar B -> \rho \gamma decays, which are again surprisingly close to the current experimental upper limits. We show that these bounds are realizations of a general bound that holds within the Standard Model for b -> d penguin processes, allowing further applications to decays of the kind B^\pm -> K^{(\ast)\pm} K^{(\ast)} and B^\pm -> \pi^\pm \ell^+ \ell^-, \rho^\pm \ell^+ \ell^-.Comment: Minor changes, to appear as rapid communication in Phys. Rev

    A Physical Realization of the Generalized PT-, C-, and CPT-Symmetries and the Position Operator for Klein-Gordon Fields

    Full text link
    Generalized parity (P), time-reversal (T), and charge-conjugation (C)operators were initially definedin the study of the pseudo-Hermitian Hamiltonians. We construct a concrete realization of these operators for Klein-Gordon fields and show that in this realization PT and C operators respectively correspond to the ordinary time-reversal and charge-grading operations. Furthermore, we present a complete description of the quantum mechanics of Klein-Gordon fields that is based on the construction of a Hilbert space with a relativistically invariant, positive-definite, and conserved inner product. In particular we offer a natural construction of a position operator and the corresponding localized and coherent states. The restriction of this position operator to the positive-frequency fields coincides with the Newton-Wigner operator. Our approach does not rely on the conventional restriction to positive-frequency fields. Yet it provides a consistent quantum mechanical description of Klein-Gordon fields with a genuine probabilistic interpretation.Comment: 20 pages, published versio

    Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK.

    Get PDF
    Short-patch repair of DNA single-strand breaks and gaps (SSB) is coordinated by XRCC1, a scaffold protein that recruits the DNA polymerase and DNA ligase required for filling and sealing the damaged strand. XRCC1 can also recruit end-processing enzymes, such as PNK (polynucleotide kinase 3'-phosphatase), Aprataxin and APLF (aprataxin/PNK-like factor), which ensure the availability of a free 3'-hydroxyl on one side of the gap, and a 5'-phosphate group on the other, for the polymerase and ligase reactions respectively. PNK binds to a phosphorylated segment of XRCC1 (between its two C-terminal BRCT domains) via its Forkhead-associated (FHA) domain. We show here, contrary to previous studies, that the FHA domain of PNK binds specifically, and with high affinity to a multiply phosphorylated motif in XRCC1 containing a pSer-pThr dipeptide, and forms a 2:1 PNK:XRCC1 complex. The high-resolution crystal structure of a PNK-FHA-XRCC1 phosphopeptide complex reveals the basis for this unusual bis-phosphopeptide recognition, which is probably a common feature of the known XRCC1-associating end-processing enzymes

    Self-dual Spectral Singularities and Coherent Perfect Absorbing Lasers without PT-symmetry

    Full text link
    A PT-symmetric optically active medium that lases at the threshold gain also acts as a complete perfect absorber at the laser wavelength. This is because spectral singularities of PT-symmetric complex potentials are always accompanied by their time-reversal dual. We investigate the significance of PT-symmetry for the appearance of these self-dual spectral singularities. In particular, using a realistic optical system we show that self-dual spectral singularities can emerge also for non-PT-symmetric configurations. This signifies the existence of non-PT-symmetric CPA-lasers.Comment: 11 pages, 3 figures, 1 table, accepted for publication in J. Phys.

    Quantum informatics with plasmonic metamaterials

    Full text link
    Surface polaritons at a meta-material interface are proposed as qubits. The SP fields are shown to have low losses, subwavelength confinement and can demonstrate very small modal volume. These important properties are used to demonstatre interesting applications in quantum information, i.e., coherent control of weak fields and large Kerr nonlinearity at the low photon level

    Standard Model CP violation in Polarised b->d l^+ l^-

    Full text link
    In the standard model, we study CP violating rate asymmetries in the decay b->d l^+ l^- when one of the leptons is polarised. We find an asymmetry of (5 -- 15)% in the polarised decay spectrum which is comparable to known results for the unpolarised case. In the kinematic region separating the rho-omega and ccˉc \bar c resonances, which is also theoretically cleanest, the polarised contribution to the asymmetry is larger than the unpolarised results. In order to observe a 3 sigma signal for direct CP violation in the polarised spectrum, assuming 100% efficiency, about 10^10 BBˉB \bar B pairs are required at a B factory. Our results indicate an asymmetric contribution from the individual polarisation states to the unpolarised CP asymmetry. Taking advantage of this, one can attribute any new physics to be most sensitive to a specific polarisation state.Comment: 23 pages, one reference adde
    • …
    corecore